diff --git a/src/vmath.nim b/src/vmath.nim index 9a11ee6..4126493 100644 --- a/src/vmath.nim +++ b/src/vmath.nim @@ -507,44 +507,32 @@ type Mat3* = array[9, float32] ## 3x3 Matrix template `[]`*(a: Mat3, i, j: int): float32 = a[i * 3 + j] template `[]=`*(a: Mat3, i, j: int, v: float32) = a[i * 3 + j] = v -proc mat3*(a, b, c, d, e, f, g, h, i: float32): Mat3 = - result[0] = a - result[1] = b - result[2] = c - result[3] = d - result[4] = e - result[5] = f - result[6] = g - result[7] = h - result[8] = i +proc mat3*(a, b, c, d, e, f, g, h, i: float32): Mat3 {.inline.} = + [ + a, b, c, + d, e, f, + g, h, i + ] -proc mat3*(a: Mat3): Mat3 = +proc mat3*(a: Mat3): Mat3 {.inline.} = a -proc identity*(a: var Mat3) = - a[0] = 1 - a[1] = 0 - a[2] = 0 - a[3] = 0 - a[4] = 1 - a[5] = 0 - a[6] = 0 - a[7] = 0 - a[8] = 1 +proc identity*(a: var Mat3) {.inline.} = + a = [ + 1.float32, 0, 0, + 0, 1, 0, + 0, 0, 1 + ] proc mat3*(): Mat3 {.inline.} = result.identity() -proc transpose*(a: Mat3): Mat3 = - result[0] = a[0] - result[1] = a[3] - result[2] = a[6] - result[3] = a[1] - result[4] = a[4] - result[5] = a[7] - result[6] = a[2] - result[7] = a[5] - result[8] = a[8] +proc transpose*(a: Mat3): Mat3 {.inline.} = + [ + a[0, 0], a[1, 0], a[2, 0], + a[0, 1], a[1, 1], a[2, 1], + a[0, 2], a[1, 2], a[2, 2] + ] proc `$`*(a: Mat3): string = &"""[{a[0]:.4f}, {a[1]:.4f}, {a[2]:.4f}, @@ -562,77 +550,67 @@ proc `*`*(a: Mat3, b: Mat3): Mat3 = result[2, 1] += b[2, 0] * a[0, 1] + b[2, 1] * a[1, 1] + b[2, 2] * a[2, 1] result[2, 2] += b[2, 0] * a[0, 2] + b[2, 1] * a[1, 2] + b[2, 2] * a[2, 2] -proc scale*(a: Mat3, v: Vec2): Mat3 = - result[0] = v.x * a[0] - result[1] = v.x * a[1] - result[2] = v.x * a[2] - result[3] = v.y * a[3] - result[4] = v.y * a[4] - result[5] = v.y * a[5] - result[6] = a[6] - result[7] = a[7] - result[8] = a[8] +proc scale*(a: Mat3, v: Vec2): Mat3 {.inline.} = + [ + v.x * a[0], v.x * a[1], v.x * a[2], + v.y * a[3], v.y * a[4], v.y * a[5], + a[6], a[7], a[8] + ] -proc scale*(a: Mat3, v: Vec3): Mat3 = - result[0] = v.x * a[0] - result[1] = v.x * a[1] - result[2] = v.x * a[2] - result[3] = v.y * a[3] - result[4] = v.y * a[4] - result[5] = v.y * a[5] - result[6] = v.z * a[6] - result[7] = v.z * a[7] - result[8] = v.z * a[8] +proc scale*(a: Mat3, v: Vec3): Mat3 {.inline.} = + [ + v.x * a[0], v.x * a[1], v.x * a[2], + v.y * a[3], v.y * a[4], v.y * a[5], + v.z * a[6], v.z * a[7], v.z * a[8] + ] -proc translate*(v: Vec2): Mat3 = - result[0, 0] = 1 - result[1, 1] = 1 - result[2, 0] = v.x - result[2, 1] = v.y - result[2, 2] = 1 +proc translate*(v: Vec2): Mat3 {.inline.} = + [ + 1.float32, 0, 0, + 0, 1, 0, + v.x, v.y, 1 + ] -proc scale*(v: Vec2): Mat3 = - result[0, 0] = v.x - result[1, 1] = v.y - result[2, 2] = 1 +proc scale*(v: Vec2): Mat3 {.inline.} = + [ + v.x, 0, 0, + 0, v.y, 0, + 0, 0, 1 + ] -proc rotationMat3*(angle: float32): Mat3 = +proc rotationMat3*(angle: float32): Mat3 {.inline.} = # Create a matrix from an angle. let sin = sin(angle) cos = cos(angle) - result[0, 0] = cos - result[0, 1] = -sin - result[0, 2] = 0 + result = [ + cos, -sin, 0, + sin, cos, 0, + 0, 0, 1 + ] - result[1, 0] = sin - result[1, 1] = cos - result[1, 2] = 0 - - result[2, 0] = 0 - result[2, 1] = 0 - result[2, 2] = 1 - -proc rotate*(a: Mat3, angle: float32): Mat3 = +proc rotate*(a: Mat3, angle: float32): Mat3 {.inline.} = # Rotates a matrix by an angle. a * rotationMat3(angle) proc `*`*(a: Mat3, b: Vec2): Vec2 = - result.x = a[0, 0]*b.x + a[1, 0]*b.y + a[2, 0] - result.y = a[0, 1]*b.x + a[1, 1]*b.y + a[2, 1] + result.x = a[0, 0] * b.x + a[1, 0] * b.y + a[2, 0] + result.y = a[0, 1] * b.x + a[1, 1] * b.y + a[2, 1] proc `*`*(a: Mat3, b: Vec3): Vec3 = - result.x = a[0, 0]*b.x + a[1, 0]*b.y + a[2, 0]*b.z - result.y = a[0, 1]*b.x + a[1, 1]*b.y + a[2, 1]*b.z - result.z = a[0, 2]*b.x + a[1, 2]*b.y + a[2, 2]*b.z + result.x = a[0, 0] * b.x + a[1, 0] * b.y + a[2, 0] * b.z + result.y = a[0, 1] * b.x + a[1, 1] * b.y + a[2, 1] * b.z + result.z = a[0, 2] * b.x + a[1, 2] * b.y + a[2, 2] * b.z proc inverse*(a: Mat3): Mat3 = - let determinant = ( - a[0, 0] * (a[1, 1] * a[2, 2] - a[2, 1] * a[1, 2]) - - a[0, 1] * (a[1, 0] * a[2, 2] - a[1, 2] * a[2, 0]) + - a[0, 2] * (a[1, 0] * a[2, 1] - a[1, 1] * a[2, 0]) - ) - let invDet = 1 / determinant + let + determinant = ( + a[0, 0] * (a[1, 1] * a[2, 2] - a[2, 1] * a[1, 2]) - + a[0, 1] * (a[1, 0] * a[2, 2] - a[1, 2] * a[2, 0]) + + a[0, 2] * (a[1, 0] * a[2, 1] - a[1, 1] * a[2, 0]) + ) + invDet = 1 / determinant + result[0, 0] = (a[1, 1] * a[2, 2] - a[2, 1] * a[1, 2]) * invDet result[0, 1] = -(a[0, 1] * a[2, 2] - a[0, 2] * a[2, 1]) * invDet result[0, 2] = (a[0, 1] * a[1, 2] - a[0, 2] * a[1, 1]) * invDet @@ -650,69 +628,37 @@ type Mat4* = array[16, float32] ## 4x4 Matrix - OpenGL row order template `[]`*(a: Mat4, i, j: int): float32 = a[i * 4 + j] template `[]=`*(a: Mat4, i, j: int, v: float32) = a[i * 4 + j] = v -proc mat4*(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, - v14, v15: float32): Mat4 = - result[0] = v0 - result[1] = v1 - result[2] = v2 - result[3] = v3 - result[4] = v4 - result[5] = v5 - result[6] = v6 - result[7] = v7 - result[8] = v8 - result[9] = v9 - result[10] = v10 - result[11] = v11 - result[12] = v12 - result[13] = v13 - result[14] = v14 - result[15] = v15 +proc mat4*( + v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15: float32 +): Mat4 {.inline.} = + [ + v0, v1, v2, v3, + v4, v5, v6, v7, + v8, v9, v10, v11, + v12, v13, v14, v15 + ] -proc mat4*(a: Mat4): Mat4 = +proc mat4*(a: Mat4): Mat4 {.inline.} = a -proc identity*(): Mat4 = - result[0] = 1 - result[1] = 0 - result[2] = 0 - result[3] = 0 - result[4] = 0 - result[5] = 1 - result[6] = 0 - result[7] = 0 - result[8] = 0 - result[9] = 0 - result[10] = 1 - result[11] = 0 - result[12] = 0 - result[13] = 0 - result[14] = 0 - result[15] = 1 +proc identity*(): Mat4 {.inline.} = + [ + 1.float32, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + ] -proc mat4*(): Mat4 = +proc mat4*(): Mat4 {.inline.} = identity() -proc transpose*(a: Mat4): Mat4 = - result[0] = a[0] - result[1] = a[4] - result[2] = a[8] - result[3] = a[12] - - result[4] = a[1] - result[5] = a[5] - result[6] = a[9] - result[7] = a[13] - - result[8] = a[2] - result[9] = a[6] - result[10] = a[10] - result[11] = a[14] - - result[12] = a[3] - result[13] = a[7] - result[14] = a[11] - result[15] = a[15] +proc transpose*(a: Mat4): Mat4 {.inline.} = + [ + a[0, 0], a[1, 0], a[2, 0], a[3, 0], + a[0, 1], a[1, 1], a[2, 1], a[3, 1], + a[0, 2], a[1, 2], a[2, 2], a[3, 2], + a[0, 3], a[1, 3], a[2, 3], a[3, 3] + ] proc determinant*(a: Mat4): float32 = var @@ -850,66 +796,66 @@ proc `*`*(a, b: Mat4): Mat4 = result[15] = b30*a03 + b31*a13 + b32*a23 + b33*a33 proc `*`*(a: Mat4, b: Vec3): Vec3 = - result.x = a[0]*b.x + a[4]*b.y + a[8]*b.z + a[12] - result.y = a[1]*b.x + a[5]*b.y + a[9]*b.z + a[13] - result.z = a[2]*b.x + a[6]*b.y + a[10]*b.z + a[14] + result.x = a[0] * b.x + a[4] * b.y + a[8] * b.z + a[12] + result.y = a[1] * b.x + a[5] * b.y + a[9] * b.z + a[13] + result.z = a[2] * b.x + a[6] * b.y + a[10] * b.z + a[14] proc `*`*(a: Mat4, b: Vec4): Vec4 = - result.x = a[0]*b.x + a[4]*b.y + a[8]*b.z + a[12]*b.w - result.y = a[1]*b.x + a[5]*b.y + a[9]*b.z + a[13]*b.w - result.z = a[2]*b.x + a[6]*b.y + a[10]*b.z + a[14]*b.w - result.w = a[3]*b.x + a[7]*b.y + a[11]*b.z + a[15]*b.w + result.x = a[0] * b.x + a[4] * b.y + a[8] * b.z + a[12] * b.w + result.y = a[1] * b.x + a[5] * b.y + a[9] * b.z + a[13] * b.w + result.z = a[2] * b.x + a[6] * b.y + a[10] * b.z + a[14] * b.w + result.w = a[3] * b.x + a[7] * b.y + a[11] * b.z + a[15] * b.w -proc right*(a: Mat4): Vec3 = +proc right*(a: Mat4): Vec3 {.inline.} = result.x = a[0] result.y = a[1] result.z = a[2] -proc `right=`*(a: var Mat4, b: Vec3) = +proc `right=`*(a: var Mat4, b: Vec3) {.inline.} = a[0] = b.x a[1] = b.y a[2] = b.z -proc up*(a: Mat4): Vec3 = +proc up*(a: Mat4): Vec3 {.inline.} = result.x = a[4] result.y = a[5] result.z = a[6] -proc `up=`*(a: var Mat4, b: Vec3) = +proc `up=`*(a: var Mat4, b: Vec3) {.inline.} = a[4] = b.x a[5] = b.y a[6] = b.z -proc forward*(a: Mat4): Vec3 = +proc forward*(a: Mat4): Vec3 {.inline.} = result.x = a[8] result.y = a[9] result.z = a[10] -proc `forward=`*(a: var Mat4, b: Vec3) = +proc `forward=`*(a: var Mat4, b: Vec3) {.inline.} = a[8] = b.x a[9] = b.y a[10] = b.z -proc pos*(a: Mat4): Vec3 = +proc pos*(a: Mat4): Vec3 {.inline.} = result.x = a[12] result.y = a[13] result.z = a[14] -proc `pos=`*(a: var Mat4, b: Vec3) = +proc `pos=`*(a: var Mat4, b: Vec3) {.inline.} = a[12] = b.x a[13] = b.y a[14] = b.z -proc rotationOnly*(a: Mat4): Mat4 = +proc rotationOnly*(a: Mat4): Mat4 {.inline.} = result = a result.pos = vec3(0, 0, 0) -proc dist*(a, b: Mat4): float32 = - var +proc dist*(a, b: Mat4): float32 {.inline.} = + let x = a[12] - b[12] y = a[13] - b[13] z = a[14] - b[14] - sqrt(x*x + y*y + z*z) + sqrt(x * x + y * y + z * z) #[ proc translate*(a: Mat4, v: Vec3): Mat4 = @@ -986,16 +932,16 @@ proc hrp*(m: Mat4): Vec3 = result.z = roll proc frustum*(left, right, bottom, top, near, far: float32): Mat4 = - var + let rl = (right - left) tb = (top - bottom) fn = (far - near) - result[0] = (near*2) / rl + result[0] = (near * 2) / rl result[1] = 0 result[2] = 0 result[3] = 0 result[4] = 0 - result[5] = (near*2) / tb + result[5] = (near * 2) / tb result[6] = 0 result[7] = 0 result[8] = (right + left) / rl @@ -1004,17 +950,17 @@ proc frustum*(left, right, bottom, top, near, far: float32): Mat4 = result[11] = -1 result[12] = 0 result[13] = 0 - result[14] = -(far*near*2) / fn + result[14] = -(far * near * 2) / fn result[15] = 0 proc perspective*(fovy, aspect, near, far: float32): Mat4 = - var - top = near * tan(fovy*PI / 360.0) + let + top = near * tan(fovy * PI / 360.0) right = top * aspect frustum(-right, right, -top, top, near, far) proc ortho*(left, right, bottom, top, near, far: float32): Mat4 = - var + let rl = (right - left) tb = (top - bottom) fn = (far - near) @@ -1036,7 +982,7 @@ proc ortho*(left, right, bottom, top, near, far: float32): Mat4 = result[15] = 1 proc lookAt*(eye, center, up: Vec3): Mat4 = - var + let eyex = eye[0] eyey = eye[1] eyez = eye[2] @@ -1057,34 +1003,34 @@ proc lookAt*(eye, center, up: Vec3): Mat4 = z2 = eyez - center[2] # normalize (no check needed for 0 because of early return) - var len = 1/sqrt(z0*z0 + z1*z1 + z2*z2) + var len = 1 / sqrt(z0 * z0 + z1 * z1 + z2 * z2) z0 *= len z1 *= len z2 *= len var # vec3.normalize(vec3.cross(up, z, x)) - x0 = upy*z2 - upz*z1 - x1 = upz*z0 - upx*z2 - x2 = upx*z1 - upy*z0 - len = sqrt(x0*x0 + x1*x1 + x2*x2) + x0 = upy * z2 - upz * z1 + x1 = upz * z0 - upx * z2 + x2 = upx * z1 - upy * z0 + len = sqrt(x0 * x0 + x1 * x1 + x2 * x2) if len == 0: x0 = 0 x1 = 0 x2 = 0 else: - len = 1/len + len = 1 / len x0 *= len x1 *= len x2 *= len var # vec3.normalize(vec3.cross(z, x, y)) - y0 = z1*x2 - z2*x1 - y1 = z2*x0 - z0*x2 - y2 = z0*x1 - z1*x0 + y0 = z1 * x2 - z2 * x1 + y1 = z2 * x0 - z0 * x2 + y2 = z0 * x1 - z1 * x0 - len = sqrt(y0*y0 + y1*y1 + y2*y2) + len = sqrt(y0 * y0 + y1 * y1 + y2 * y2) if len == 0: y0 = 0 y1 = 0 @@ -1107,9 +1053,9 @@ proc lookAt*(eye, center, up: Vec3): Mat4 = result[9] = y2 result[10] = z2 result[11] = 0 - result[12] = -(x0*eyex + x1*eyey + x2*eyez) - result[13] = -(y0*eyex + y1*eyey + y2*eyez) - result[14] = -(z0*eyex + z1*eyey + z2*eyez) + result[12] = -(x0 * eyex + x1 * eyey + x2 * eyez) + result[13] = -(y0 * eyex + y1 * eyey + y2 * eyez) + result[14] = -(z0 * eyex + z1 * eyey + z2 * eyez) result[15] = 1 proc mat3*(m: Mat4): Mat3 = @@ -1182,19 +1128,19 @@ type Quat* = object z*: float32 w*: float32 -proc quat*(x, y, z, w: float32): Quat = +proc quat*(x, y, z, w: float32): Quat {.inline.} = result.x = x result.y = y result.z = z result.w = w -proc conjugate*(q: Quat): Quat = +proc conjugate*(q: Quat): Quat {.inline.} = result.w = +q.w result.x = -q.x result.y = -q.y result.z = -q.z -proc length*(q: Quat): float32 = +proc length*(q: Quat): float32 {.inline.} = sqrt( q.w * q.w + q.x * q.x + @@ -1209,23 +1155,23 @@ proc normalize*(q: Quat): Quat = result.z = q.z / m result.w = q.w / m -proc xyz*(q: Quat): Vec3 = +proc xyz*(q: Quat): Vec3 {.inline.} = result.x = q.x result.y = q.y result.z = q.z -proc `xyz=`*(q: var Quat, v: Vec3) = +proc `xyz=`*(q: var Quat, v: Vec3) {.inline.} = q.x = v.x q.y = v.y q.z = v.z -proc `-`*(a: var Quat): Quat = +proc `-`*(a: var Quat): Quat {.inline.} = result.x = -a.x result.y = -a.y result.z = -a.z result.w = -a.w -proc `+`*(a: Quat, b: Quat): Quat = +proc `+`*(a: Quat, b: Quat): Quat {.inline.} = result.x = a.x + b.x result.y = a.y + b.y result.z = a.z + b.z @@ -1249,16 +1195,29 @@ proc `*`*(a, b: Quat): Quat = result.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x result.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z -proc `*`*(q: Quat, v: float32): Quat = +proc `*`*(q: Quat, v: float32): Quat {.inline.} = ## Multiply the quaternion by a float32. result.x = q.x * v result.y = q.y * v result.z = q.z * v result.w = q.w * v +proc `/`*(q: Quat, v: float32): Quat {.inline.} = + ## Divide the quaternion by a float32. + result.x = q.x / v + result.y = q.y / v + result.z = q.z / v + result.w = q.w / v + +proc `*=`*(a: var Quat, b: float32) {.inline.} = + a = a * b + +proc `/=`*(a: var Quat, b: float32) {.inline.} = + a = a / b + proc `*`*(q: Quat, v: Vec3): Vec3 = ## Multiply the quaternion by a vector. - var + let x = v.x y = v.y z = v.z @@ -1277,29 +1236,35 @@ proc `*`*(q: Quat, v: Vec3): Vec3 = result.y = iy * qw + iw * -qy + iz * -qx - ix * -qz result.z = iz * qw + iw * -qz + ix * -qy - iy * -qx +proc `[]`*(a: var Quat, i: int, b: float32) = + case i + of 0: a.x + of 1: a.y + of 2: a.z + of 3: a.w + else: raise newException(IndexDefect, "Index not in 0 .. 3") + proc `[]=`*(a: var Quat, i: int, b: float32) = - assert(i == 0 or i == 1 or i == 2 or i == 3) - if i == 0: - a.x = b - elif i == 1: - a.y = b - elif i == 2: - a.z = b - elif i == 3: - a.w = b + case i + of 0: a.x = b + of 1: a.y = b + of 2: a.z = b + of 3: a.w = b + else: raise newException(IndexDefect, "Index not in 0 .. 3") proc mat3*(q: Quat): Mat3 = - var xx = q.x * q.x - var xy = q.x * q.y - var xz = q.x * q.z - var xw = q.x * q.w + let + xx = q.x * q.x + xy = q.x * q.y + xz = q.x * q.z + xw = q.x * q.w - var yy = q.y * q.y - var yz = q.y * q.z - var yw = q.y * q.w + yy = q.y * q.y + yz = q.y * q.z + yw = q.y * q.w - var zz = q.z * q.z - var zw = q.z * q.w + zz = q.z * q.z + zw = q.z * q.w result[0] = 1 - 2 * (yy + zz) result[1] = 0 + 2 * (xy - zw) @@ -1312,17 +1277,18 @@ proc mat3*(q: Quat): Mat3 = result[8] = 1 - 2 * (xx + yy) proc mat4*(q: Quat): Mat4 = - var xx = q.x * q.x - var xy = q.x * q.y - var xz = q.x * q.z - var xw = q.x * q.w + let + xx = q.x * q.x + xy = q.x * q.y + xz = q.x * q.z + xw = q.x * q.w - var yy = q.y * q.y - var yz = q.y * q.z - var yw = q.y * q.w + yy = q.y * q.y + yz = q.y * q.z + yw = q.y * q.w - var zz = q.z * q.z - var zw = q.z * q.w + zz = q.z * q.z + zw = q.z * q.w result[00] = 1 - 2 * (yy + zz) result[01] = 0 + 2 * (xy - zw) @@ -1342,11 +1308,11 @@ proc mat4*(q: Quat): Mat4 = result[14] = 0 result[15] = 1.0 -proc recifuncalSqrt*(x: float32): float32 = - 1.0/sqrt(x) +proc recifuncalSqrt*(x: float32): float32 {.inline.} = + 1.0 / sqrt(x) proc quat*(m: Mat4): Quat = - var + let m00 = m[0] m01 = m[4] m02 = m[8] @@ -1359,8 +1325,9 @@ proc quat*(m: Mat4): Quat = m21 = m[6] m22 = m[10] - var q: Quat - var t: float32 + var + q: Quat + t: float32 if m22 < 0: if m00 > m11: @@ -1382,8 +1349,9 @@ proc quat*(m: Mat4): Quat = q proc fromAxisAngle*(axis: Vec3, angle: float32): Quat = - var a = axis.normalize() - var s = sin(angle / 2) + let + a = axis.normalize() + s = sin(angle / 2) result.x = a.x * s result.y = a.y * s result.z = a.z * s @@ -1402,18 +1370,19 @@ proc toAxisAngle*(q: Quat, axis: var Vec3, angle: var float32) = axis.z = q.z / sinAngle proc quat*(heading, pitch, roll: float32): Quat = - var t0 = cos(heading * 0.5) - var t1 = sin(heading * 0.5) - var t2 = cos(roll * 0.5) - var t3 = sin(roll * 0.5) - var t4 = cos(pitch * 0.5) - var t5 = sin(pitch * 0.5) + let + t0 = cos(heading * 0.5) + t1 = sin(heading * 0.5) + t2 = cos(roll * 0.5) + t3 = sin(roll * 0.5) + t4 = cos(pitch * 0.5) + t5 = sin(pitch * 0.5) result.w = t0 * t2 * t4 + t1 * t3 * t5 result.x = t0 * t3 * t4 - t1 * t2 * t5 result.y = t0 * t2 * t5 + t1 * t3 * t4 result.z = t1 * t2 * t4 - t0 * t3 * t5 -proc quat*(hpr: Vec3): Quat = +proc quat*(hpr: Vec3): Quat {.inline.} = quat(hpr.x, hpr.y, hpr.z) proc hrp*(q: Quat): Vec3 = @@ -1434,8 +1403,8 @@ proc hrp*(q: Quat): Vec3 = var t4 = +1.0 - 2.0 * (ysqr + q.z * q.z) result.x = arctan2(t3, t4) -proc dot*(a: Quat, b: Quat): float32 = - a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w +proc dot*(a: Quat, b: Quat): float32 {.inline.} = + a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w proc nlerp*(a: Quat, b: Quat, v: float32): Quat = if dot(a, b) < 0: @@ -1447,25 +1416,25 @@ proc nlerp*(a: Quat, b: Quat, v: float32): Quat = proc `$`*(a: Quat): string = &"q({a.x:.8f}, {a.y:.8f}, {a.z:.8f}, {a.w:.8f})" -proc rotate*(angle: float32, axis: Vec3): Mat4 = +proc rotate*(angle: float32, axis: Vec3): Mat4 {.inline.} = fromAxisAngle(axis, angle).mat4() -proc rotateX*(angle: float32): Mat4 = +proc rotateX*(angle: float32): Mat4 {.inline.} = rotate(angle, vec3(1, 0, 0)) -proc rotateY*(angle: float32): Mat4 = +proc rotateY*(angle: float32): Mat4 {.inline.} = rotate(angle, vec3(0, 1, 0)) -proc rotateZ*(angle: float32): Mat4 = +proc rotateZ*(angle: float32): Mat4 {.inline.} = rotate(angle, vec3(0, 0, 1)) -proc scaleMat*(scale: Vec3): Mat4 = +proc scaleMat*(scale: Vec3): Mat4 {.inline.} = result[0] = scale.x result[5] = scale.y result[10] = scale.z result[15] = 1.0 -proc scaleMat*(scale: float32): Mat4 = +proc scaleMat*(scale: float32): Mat4 {.inline.} = scaleMat(vec3(scale, scale, scale)) type Rect* = object diff --git a/tests/test.nim b/tests/test.nim index 2a87526..9134b8d 100644 --- a/tests/test.nim +++ b/tests/test.nim @@ -1,5 +1,21 @@ import vmath, osproc, random, streams +var v2 = vec2(0, 0) +v2 *= 1 +v2 /= 1 + +var v3 = vec3(0, 0, 0) +v3 *= 1 +v3 /= 1 + +var v4 = vec4(0, 0, 0, 0) +v4 *= 1 +v4 /= 1 + +var q = quat(0, 0, 0, 0) +q *= 1 +q /= 1 + var s = newFileStream("tests/test-output.txt", fmWrite) randomize(1234)