652 lines
21 KiB
Nim
652 lines
21 KiB
Nim
## Blending modes.
|
|
|
|
import chroma, common, math
|
|
|
|
when defined(amd64) and not defined(pixieNoSimd):
|
|
import nimsimd/sse2
|
|
|
|
# See https://www.w3.org/TR/compositing-1/
|
|
# See https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
|
|
|
|
type
|
|
BlendMode* = enum
|
|
bmNormal
|
|
bmDarken
|
|
bmMultiply
|
|
# bmLinearBurn
|
|
bmColorBurn
|
|
bmLighten
|
|
bmScreen
|
|
# bmLinearDodge
|
|
bmColorDodge
|
|
bmOverlay
|
|
bmSoftLight
|
|
bmHardLight
|
|
bmDifference
|
|
bmExclusion
|
|
bmHue
|
|
bmSaturation
|
|
bmColor
|
|
bmLuminosity
|
|
|
|
bmMask ## Special blend mode that is used for masking
|
|
bmOverwrite ## Special blend mode that just copies pixels
|
|
bmSubtractMask ## Inverse mask
|
|
bmExcludeMask
|
|
|
|
Blender* = proc(backdrop, source: ColorRGBX): ColorRGBX {.gcsafe, raises: [].}
|
|
## Function signature returned by blender.
|
|
Masker* = proc(backdrop, source: uint8): uint8 {.gcsafe, raises: [].}
|
|
## Function signature returned by masker.
|
|
|
|
when defined(release):
|
|
{.push checks: off.}
|
|
|
|
proc min(a, b: uint32): uint32 {.inline.} =
|
|
if a < b: a else: b
|
|
|
|
proc alphaFix(backdrop, source, mixed: ColorRGBA): ColorRGBA =
|
|
## After mixing an image, adjust its alpha value to be correct.
|
|
let
|
|
sa = source.a.uint32
|
|
ba = backdrop.a.uint32
|
|
t0 = sa * (255 - ba)
|
|
t1 = sa * ba
|
|
t2 = (255 - sa) * ba
|
|
|
|
let
|
|
r = t0 * source.r.uint32 + t1 * mixed.r.uint32 + t2 * backdrop.r.uint32
|
|
g = t0 * source.g.uint32 + t1 * mixed.g.uint32 + t2 * backdrop.g.uint32
|
|
b = t0 * source.b.uint32 + t1 * mixed.b.uint32 + t2 * backdrop.b.uint32
|
|
a = sa + ba * (255 - sa) div 255
|
|
|
|
if a == 0:
|
|
return
|
|
|
|
result.r = (r div a div 255).uint8
|
|
result.g = (g div a div 255).uint8
|
|
result.b = (b div a div 255).uint8
|
|
result.a = a.uint8
|
|
|
|
proc alphaFix(backdrop, source, mixed: Color): Color =
|
|
## After mixing an image, adjust its alpha value to be correct.
|
|
result.a = (source.a + backdrop.a * (1.0 - source.a))
|
|
if result.a == 0:
|
|
return
|
|
|
|
let
|
|
t0 = source.a * (1 - backdrop.a)
|
|
t1 = source.a * backdrop.a
|
|
t2 = (1 - source.a) * backdrop.a
|
|
|
|
result.r = t0 * source.r + t1 * mixed.r + t2 * backdrop.r
|
|
result.g = t0 * source.g + t1 * mixed.g + t2 * backdrop.g
|
|
result.b = t0 * source.b + t1 * mixed.b + t2 * backdrop.b
|
|
|
|
result.r /= result.a
|
|
result.g /= result.a
|
|
result.b /= result.a
|
|
|
|
proc blendAlpha*(backdrop, source: uint8): uint8 {.inline.} =
|
|
## Blends alphas of backdrop, source.
|
|
source + ((backdrop.uint32 * (255 - source)) div 255).uint8
|
|
|
|
proc screen(backdrop, source: uint32): uint8 {.inline.} =
|
|
((backdrop + source).int32 - ((backdrop * source) div 255).int32).uint8
|
|
|
|
proc hardLight(
|
|
backdropColor, backdropAlpha, sourceColor, sourceAlpha: uint32
|
|
): uint8 {.inline.} =
|
|
if sourceColor * 2 <= sourceAlpha:
|
|
((
|
|
2 * sourceColor * backdropColor +
|
|
(sourceColor * (255 - backdropAlpha)) +
|
|
(backdropColor * (255 - sourceAlpha))
|
|
) div 255).uint8
|
|
else:
|
|
screen(backdropColor, sourceColor)
|
|
|
|
proc softLight(backdrop, source: float32): float32 {.inline.} =
|
|
## Pegtop
|
|
(1 - 2 * source) * backdrop ^ 2 + 2 * source * backdrop
|
|
|
|
proc `+`(c: Color, v: float32): Color {.inline.} =
|
|
result.r = c.r + v
|
|
result.g = c.g + v
|
|
result.b = c.b + v
|
|
result.a = c.a + v
|
|
|
|
proc `+`(v: float32, c: Color): Color {.inline.} =
|
|
c + v
|
|
|
|
proc `*`(c: Color, v: float32): Color {.inline.} =
|
|
result.r = c.r * v
|
|
result.g = c.g * v
|
|
result.b = c.b * v
|
|
result.a = c.a * v
|
|
|
|
proc `/`(c: Color, v: float32): Color {.inline.} =
|
|
result.r = c.r / v
|
|
result.g = c.g / v
|
|
result.b = c.b / v
|
|
result.a = c.a / v
|
|
|
|
proc `-`(c: Color, v: float32): Color {.inline.} =
|
|
result.r = c.r - v
|
|
result.g = c.g - v
|
|
result.b = c.b - v
|
|
result.a = c.a - v
|
|
|
|
proc Lum(C: Color): float32 {.inline.} =
|
|
0.3 * C.r + 0.59 * C.g + 0.11 * C.b
|
|
|
|
proc ClipColor(C: var Color) {.inline.} =
|
|
let
|
|
L = Lum(C)
|
|
n = min([C.r, C.g, C.b])
|
|
x = max([C.r, C.g, C.b])
|
|
if n < 0:
|
|
C = L + (((C - L) * L) / (L - n))
|
|
if x > 1:
|
|
C = L + (((C - L) * (1 - L)) / (x - L))
|
|
|
|
proc SetLum(C: Color, l: float32): Color {.inline.} =
|
|
let d = l - Lum(C)
|
|
result.r = C.r + d
|
|
result.g = C.g + d
|
|
result.b = C.b + d
|
|
ClipColor(result)
|
|
|
|
proc Sat(C: Color): float32 {.inline.} =
|
|
max([C.r, C.g, C.b]) - min([C.r, C.g, C.b])
|
|
|
|
proc SetSat(C: Color, s: float32): Color {.inline.} =
|
|
let satC = Sat(C)
|
|
if satC > 0:
|
|
result = (C - min([C.r, C.g, C.b])) * s / satC
|
|
|
|
proc blendNormal*(backdrop, source: ColorRGBX): ColorRGBX =
|
|
if backdrop.a == 0 or source.a == 255:
|
|
return source
|
|
if source.a == 0:
|
|
return backdrop
|
|
|
|
let k = (255 - source.a.uint32)
|
|
result.r = source.r + ((backdrop.r.uint32 * k) div 255).uint8
|
|
result.g = source.g + ((backdrop.g.uint32 * k) div 255).uint8
|
|
result.b = source.b + ((backdrop.b.uint32 * k) div 255).uint8
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendDarken(backdrop, source: ColorRGBX): ColorRGBX =
|
|
proc blend(
|
|
backdropColor, backdropAlpha, sourceColor, sourceAlpha: uint8
|
|
): uint8 {.inline.} =
|
|
min(
|
|
backdropColor + ((255 - backdropAlpha).uint32 * sourceColor) div 255,
|
|
sourceColor + ((255 - sourceAlpha).uint32 * backdropColor) div 255
|
|
).uint8
|
|
|
|
result.r = blend(backdrop.r, backdrop.a, source.r, source.a)
|
|
result.g = blend(backdrop.g, backdrop.a, source.g, source.a)
|
|
result.b = blend(backdrop.b, backdrop.a, source.b, source.a)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendMultiply(backdrop, source: ColorRGBX): ColorRGBX =
|
|
proc blend(
|
|
backdropColor, backdropAlpha, sourceColor, sourceAlpha: uint8
|
|
): uint8 {.inline.} =
|
|
((
|
|
(255 - backdropAlpha).uint32 * sourceColor +
|
|
(255 - sourceAlpha).uint32 * backdropColor +
|
|
backdropColor.uint32 * sourceColor
|
|
) div 255).uint8
|
|
|
|
result.r = blend(backdrop.r, backdrop.a, source.r, source.a)
|
|
result.g = blend(backdrop.g, backdrop.a, source.g, source.a)
|
|
result.b = blend(backdrop.b, backdrop.a, source.b, source.a)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
# proc blendLinearBurn(backdrop, source: ColorRGBX): ColorRGBX =
|
|
# let
|
|
# backdrop = backdrop.toStraightAlpha()
|
|
# source = source.toStraightAlpha()
|
|
# result.r = min(0, backdrop.r.int32 + source.r.int32 - 255).uint8
|
|
# result.g = min(0, backdrop.g.int32 + source.g.int32 - 255).uint8
|
|
# result.b = min(0, backdrop.b.int32 + source.b.int32 - 255).uint8
|
|
# result = alphaFix(backdrop, source, result)
|
|
# result = result.toPremultipliedAlpha()
|
|
|
|
proc blendColorBurn(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let
|
|
backdrop = backdrop.rgba()
|
|
source = source.rgba()
|
|
proc blend(backdrop, source: uint32): uint8 {.inline.} =
|
|
if backdrop == 255:
|
|
255.uint8
|
|
elif source == 0:
|
|
0
|
|
else:
|
|
255 - min(255, (255 * (255 - backdrop)) div source).uint8
|
|
var blended: ColorRGBA
|
|
blended.r = blend(backdrop.r, source.r)
|
|
blended.g = blend(backdrop.g, source.g)
|
|
blended.b = blend(backdrop.b, source.b)
|
|
result = alphaFix(backdrop, source, blended).rgbx()
|
|
|
|
proc blendLighten(backdrop, source: ColorRGBX): ColorRGBX =
|
|
proc blend(
|
|
backdropColor, backdropAlpha, sourceColor, sourceAlpha: uint8
|
|
): uint8 {.inline.} =
|
|
max(
|
|
backdropColor + ((255 - backdropAlpha).uint32 * sourceColor) div 255,
|
|
sourceColor + ((255 - sourceAlpha).uint32 * backdropColor) div 255
|
|
).uint8
|
|
|
|
result.r = blend(backdrop.r, backdrop.a, source.r, source.a)
|
|
result.g = blend(backdrop.g, backdrop.a, source.g, source.a)
|
|
result.b = blend(backdrop.b, backdrop.a, source.b, source.a)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendScreen(backdrop, source: ColorRGBX): ColorRGBX =
|
|
result.r = screen(backdrop.r, source.r)
|
|
result.g = screen(backdrop.g, source.g)
|
|
result.b = screen(backdrop.b, source.b)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
# proc blendLinearDodge(backdrop, source: ColorRGBX): ColorRGBX =
|
|
# let
|
|
# backdrop = backdrop.toStraightAlpha()
|
|
# source = source.toStraightAlpha()
|
|
# result.r = min(backdrop.r.uint32 + source.r, 255).uint8
|
|
# result.g = min(backdrop.g.uint32 + source.g, 255).uint8
|
|
# result.b = min(backdrop.b.uint32 + source.b, 255).uint8
|
|
# result = alphaFix(backdrop, source, result)
|
|
# result = result.toPremultipliedAlpha()
|
|
|
|
proc blendColorDodge(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let
|
|
backdrop = backdrop.rgba()
|
|
source = source.rgba()
|
|
proc blend(backdrop, source: uint32): uint8 {.inline.} =
|
|
if backdrop == 0:
|
|
0.uint8
|
|
elif source == 255:
|
|
255
|
|
else:
|
|
min(255, (255 * backdrop) div (255 - source)).uint8
|
|
var blended: ColorRGBA
|
|
blended.r = blend(backdrop.r, source.r)
|
|
blended.g = blend(backdrop.g, source.g)
|
|
blended.b = blend(backdrop.b, source.b)
|
|
result = alphaFix(backdrop, source, blended).rgbx()
|
|
|
|
proc blendOverlay(backdrop, source: ColorRGBX): ColorRGBX =
|
|
result.r = hardLight(source.r, source.a, backdrop.r, backdrop.a)
|
|
result.g = hardLight(source.g, source.a, backdrop.g, backdrop.a)
|
|
result.b = hardLight(source.b, source.a, backdrop.b, backdrop.a)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendSoftLight(backdrop, source: ColorRGBX): ColorRGBX =
|
|
# proc softLight(backdrop, source: int32): uint8 {.inline.} =
|
|
# ## Pegtop
|
|
# (
|
|
# ((255 - 2 * source) * backdrop ^ 2) div 255 ^ 2 +
|
|
# (2 * source * backdrop) div 255
|
|
# ).uint8
|
|
|
|
let
|
|
backdrop = backdrop.rgba()
|
|
source = source.rgba()
|
|
|
|
var rgba: ColorRGBA
|
|
when defined(amd64) and not defined(pixieNoSimd):
|
|
let
|
|
vb = mm_setr_ps(
|
|
backdrop.r.float32,
|
|
backdrop.g.float32,
|
|
backdrop.b.float32,
|
|
0
|
|
)
|
|
vs = mm_setr_ps(source.r.float32, source.g.float32, source.b.float32, 0)
|
|
v2 = mm_set1_ps(2)
|
|
v255 = mm_set1_ps(255)
|
|
v255sq = mm_set1_ps(255 * 255)
|
|
vm = ((v255 - v2 * vs) * vb * vb) / v255sq + (v2 * vs * vb) / v255
|
|
values = cast[array[4, uint32]](mm_cvtps_epi32(vm))
|
|
|
|
rgba.r = values[0].uint8
|
|
rgba.g = values[1].uint8
|
|
rgba.b = values[2].uint8
|
|
|
|
# proc alphaFix(backdrop, source, mixed: ColorRGBX): ColorRGBX {.inline.} =
|
|
# if backdrop.a == 0 and source.a == 0:
|
|
# return
|
|
# let
|
|
# vb = mm_setr_ps(backdrop.r.float32, backdrop.g.float32, backdrop.b.float32, 0)
|
|
# vs = mm_setr_ps(source.r.float32, source.g.float32, source.b.float32, 0)
|
|
# vm = mm_setr_ps(mixed.r.float32, mixed.g.float32, mixed.b.float32, 0)
|
|
# alphaFix(backdrop, source, vb, vs, vm)
|
|
|
|
let
|
|
sa = source.a.float32
|
|
ba = backdrop.a.float32
|
|
a = sa + ba * (255 - sa) / 255
|
|
if a == 0:
|
|
return
|
|
|
|
let
|
|
t0 = mm_set1_ps(sa * (255 - ba))
|
|
t1 = mm_set1_ps(sa * ba)
|
|
t2 = mm_set1_ps((255 - sa) * ba)
|
|
va = mm_set1_ps(a)
|
|
final = cast[array[4, uint32]](
|
|
mm_cvtps_epi32((t0 * vs + t1 * vm + t2 * vb) / va / v255)
|
|
)
|
|
|
|
rgba.r = final[0].uint8
|
|
rgba.g = final[1].uint8
|
|
rgba.b = final[2].uint8
|
|
rgba.a = a.uint8
|
|
else:
|
|
let
|
|
b = backdrop.color
|
|
s = source.color
|
|
var blended: Color
|
|
blended.r = softLight(b.r, s.r)
|
|
blended.g = softLight(b.g, s.g)
|
|
blended.b = softLight(b.b, s.b)
|
|
blended = alphaFix(b, s, blended)
|
|
rgba = blended.rgba
|
|
|
|
result = rgba.rgbx()
|
|
|
|
proc blendHardLight(backdrop, source: ColorRGBX): ColorRGBX =
|
|
result.r = hardLight(backdrop.r, backdrop.a, source.r, source.a)
|
|
result.g = hardLight(backdrop.g, backdrop.a, source.g, source.a)
|
|
result.b = hardLight(backdrop.b, backdrop.a, source.b, source.a)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendDifference(backdrop, source: ColorRGBX): ColorRGBX =
|
|
proc blend(
|
|
backdropColor, backdropAlpha, sourceColor, sourceAlpha: uint8
|
|
): uint8 {.inline.} =
|
|
((backdropColor + sourceColor).int32 - 2 *
|
|
(min(
|
|
backdropColor.uint32 * sourceAlpha,
|
|
sourceColor.uint32 * backdropAlpha
|
|
) div 255).int32
|
|
).uint8
|
|
|
|
result.r = blend(backdrop.r, backdrop.a, source.r, source.a)
|
|
result.g = blend(backdrop.g, backdrop.a, source.g, source.a)
|
|
result.b = blend(backdrop.b, backdrop.a, source.b, source.a)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendExclusion(backdrop, source: ColorRGBX): ColorRGBX =
|
|
proc blend(backdrop, source: uint32): uint8 {.inline.} =
|
|
let v = (backdrop + source).int32 - ((2 * backdrop * source) div 255).int32
|
|
max(0, v).uint8
|
|
result.r = blend(backdrop.r.uint32, source.r.uint32)
|
|
result.g = blend(backdrop.g.uint32, source.g.uint32)
|
|
result.b = blend(backdrop.b.uint32, source.b.uint32)
|
|
result.a = blendAlpha(backdrop.a, source.a)
|
|
|
|
proc blendColor(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let
|
|
backdrop = backdrop.rgba().color
|
|
source = source.rgba().color
|
|
blended = SetLum(source, Lum(backdrop))
|
|
result = alphaFix(backdrop, source, blended).rgba.rgbx()
|
|
|
|
proc blendLuminosity(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let
|
|
backdrop = backdrop.rgba().color
|
|
source = source.rgba().color
|
|
blended = SetLum(backdrop, Lum(source))
|
|
result = alphaFix(backdrop, source, blended).rgba.rgbx()
|
|
|
|
proc blendHue(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let
|
|
backdrop = backdrop.rgba().color
|
|
source = source.rgba().color
|
|
blended = SetLum(SetSat(source, Sat(backdrop)), Lum(backdrop))
|
|
result = alphaFix(backdrop, source, blended).rgba.rgbx()
|
|
|
|
proc blendSaturation(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let
|
|
backdrop = backdrop.rgba().color
|
|
source = source.rgba().color
|
|
blended = SetLum(SetSat(backdrop, Sat(source)), Lum(backdrop))
|
|
result = alphaFix(backdrop, source, blended).rgba.rgbx()
|
|
|
|
proc blendMask*(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let k = source.a.uint32
|
|
result.r = ((backdrop.r * k) div 255).uint8
|
|
result.g = ((backdrop.g * k) div 255).uint8
|
|
result.b = ((backdrop.b * k) div 255).uint8
|
|
result.a = ((backdrop.a * k) div 255).uint8
|
|
|
|
proc blendSubtractMask(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let a = (backdrop.a.uint32 * (255 - source.a)) div 255
|
|
result.r = ((backdrop.r * a) div 255).uint8
|
|
result.g = ((backdrop.g * a) div 255).uint8
|
|
result.b = ((backdrop.b * a) div 255).uint8
|
|
result.a = a.uint8
|
|
|
|
proc blendExcludeMask(backdrop, source: ColorRGBX): ColorRGBX =
|
|
let a = max(backdrop.a, source.a).uint32 - min(backdrop.a, source.a)
|
|
result.r = ((source.r * a) div 255).uint8
|
|
result.g = ((source.g * a) div 255).uint8
|
|
result.b = ((source.b * a) div 255).uint8
|
|
result.a = a.uint8
|
|
|
|
proc blendOverwrite(backdrop, source: ColorRGBX): ColorRGBX =
|
|
source
|
|
|
|
# proc blendWhite(backdrop, source: ColorRGBX): ColorRGBX =
|
|
# ## For testing
|
|
# rgbx(255, 255, 255, 255)
|
|
|
|
proc blender*(blendMode: BlendMode): Blender {.raises: [].} =
|
|
## Returns a blend function for a given blend mode.
|
|
case blendMode:
|
|
of bmNormal: blendNormal
|
|
of bmDarken: blendDarken
|
|
of bmMultiply: blendMultiply
|
|
# of bmLinearBurn: blendLinearBurn
|
|
of bmColorBurn: blendColorBurn
|
|
of bmLighten: blendLighten
|
|
of bmScreen: blendScreen
|
|
# of bmLinearDodge: blendLinearDodge
|
|
of bmColorDodge: blendColorDodge
|
|
of bmOverlay: blendOverlay
|
|
of bmSoftLight: blendSoftLight
|
|
of bmHardLight: blendHardLight
|
|
of bmDifference: blendDifference
|
|
of bmExclusion: blendExclusion
|
|
of bmHue: blendHue
|
|
of bmSaturation: blendSaturation
|
|
of bmColor: blendColor
|
|
of bmLuminosity: blendLuminosity
|
|
of bmMask: blendMask
|
|
of bmOverwrite: blendOverwrite
|
|
of bmSubtractMask: blendSubtractMask
|
|
of bmExcludeMask: blendExcludeMask
|
|
|
|
proc maskNormal(backdrop, source: uint8): uint8 =
|
|
## Blending masks
|
|
blendAlpha(backdrop, source)
|
|
|
|
proc maskMask(backdrop, source: uint8): uint8 =
|
|
## Masking masks
|
|
((backdrop.uint32 * source) div 255).uint8
|
|
|
|
proc maskSubtract(backdrop, source: uint8): uint8 =
|
|
((backdrop.uint32 * (255 - source)) div 255).uint8
|
|
|
|
proc maskExclude(backdrop, source: uint8): uint8 =
|
|
max(backdrop, source) - min(backdrop, source)
|
|
|
|
proc maskOverwrite(backdrop, source: uint8): uint8 =
|
|
source
|
|
|
|
proc masker*(blendMode: BlendMode): Masker {.raises: [PixieError].} =
|
|
## Returns a blend masking function for a given blend masking mode.
|
|
case blendMode:
|
|
of bmNormal: maskNormal
|
|
of bmMask: maskMask
|
|
of bmOverwrite: maskOverwrite
|
|
of bmSubtractMask: maskSubtract
|
|
of bmExcludeMask: maskExclude
|
|
else:
|
|
raise newException(PixieError, "No masker for " & $blendMode)
|
|
|
|
when defined(amd64) and not defined(pixieNoSimd):
|
|
type
|
|
BlenderSimd* = proc(blackdrop, source: M128i): M128i {.gcsafe, raises: [].}
|
|
## Function signature returned by blenderSimd.
|
|
MaskerSimd* = proc(blackdrop, source: M128i): M128i {.gcsafe, raises: [].}
|
|
## Function signature returned by maskerSimd.
|
|
|
|
proc blendNormalInlineSimd*(backdrop, source: M128i): M128i {.inline.} =
|
|
let
|
|
alphaMask = mm_set1_epi32(cast[int32](0xff000000))
|
|
oddMask = mm_set1_epi16(cast[int16](0xff00))
|
|
div255 = mm_set1_epi16(cast[int16](0x8081))
|
|
|
|
var
|
|
sourceAlpha = mm_and_si128(source, alphaMask)
|
|
backdropEven = mm_slli_epi16(backdrop, 8)
|
|
backdropOdd = mm_and_si128(backdrop, oddMask)
|
|
|
|
sourceAlpha = mm_or_si128(sourceAlpha, mm_srli_epi32(sourceAlpha, 16))
|
|
|
|
let k = mm_sub_epi32(
|
|
mm_set1_epi32(cast[int32]([0.uint8, 255, 0, 255])),
|
|
sourceAlpha
|
|
)
|
|
|
|
backdropEven = mm_mulhi_epu16(backdropEven, k)
|
|
backdropOdd = mm_mulhi_epu16(backdropOdd, k)
|
|
|
|
backdropEven = mm_srli_epi16(mm_mulhi_epu16(backdropEven, div255), 7)
|
|
backdropOdd = mm_srli_epi16(mm_mulhi_epu16(backdropOdd, div255), 7)
|
|
|
|
mm_add_epi8(
|
|
source,
|
|
mm_or_si128(backdropEven, mm_slli_epi16(backdropOdd, 8))
|
|
)
|
|
|
|
proc blendNormalSimd(backdrop, source: M128i): M128i =
|
|
blendNormalInlineSimd(backdrop, source)
|
|
|
|
proc blendMaskSimd(backdrop, source: M128i): M128i =
|
|
let
|
|
alphaMask = mm_set1_epi32(cast[int32](0xff000000))
|
|
oddMask = mm_set1_epi16(cast[int16](0xff00))
|
|
div255 = mm_set1_epi16(cast[int16](0x8081))
|
|
|
|
var
|
|
sourceAlpha = mm_and_si128(source, alphaMask)
|
|
backdropEven = mm_slli_epi16(backdrop, 8)
|
|
backdropOdd = mm_and_si128(backdrop, oddMask)
|
|
|
|
sourceAlpha = mm_or_si128(sourceAlpha, mm_srli_epi32(sourceAlpha, 16))
|
|
|
|
backdropEven = mm_mulhi_epu16(backdropEven, sourceAlpha)
|
|
backdropOdd = mm_mulhi_epu16(backdropOdd, sourceAlpha)
|
|
|
|
backdropEven = mm_srli_epi16(mm_mulhi_epu16(backdropEven, div255), 7)
|
|
backdropOdd = mm_srli_epi16(mm_mulhi_epu16(backdropOdd, div255), 7)
|
|
|
|
mm_or_si128(backdropEven, mm_slli_epi16(backdropOdd, 8))
|
|
|
|
proc blendOverwriteSimd(backdrop, source: M128i): M128i =
|
|
source
|
|
|
|
proc blenderSimd*(blendMode: BlendMode): BlenderSimd {.raises: [PixieError].} =
|
|
## Returns a blend function for a given blend mode with SIMD support.
|
|
case blendMode:
|
|
of bmNormal: blendNormalSimd
|
|
of bmMask: blendMaskSimd
|
|
of bmOverwrite: blendOverwriteSimd
|
|
else:
|
|
raise newException(PixieError, "No SIMD blender for " & $blendMode)
|
|
|
|
proc hasSimdBlender*(blendMode: BlendMode): bool {.inline, raises: [].} =
|
|
## Is there a blend function for a given blend mode with SIMD support?
|
|
blendMode in {bmNormal, bmMask, bmOverwrite}
|
|
|
|
proc maskNormalSimd(backdrop, source: M128i): M128i =
|
|
## Blending masks
|
|
let
|
|
oddMask = mm_set1_epi16(cast[int16](0xff00))
|
|
v255high = mm_set1_epi16(cast[int16](255.uint16 shl 8))
|
|
div255 = mm_set1_epi16(cast[int16](0x8081))
|
|
|
|
var
|
|
sourceEven = mm_slli_epi16(source, 8)
|
|
sourceOdd = mm_and_si128(source, oddMask)
|
|
|
|
let
|
|
evenK = mm_sub_epi16(v255high, sourceEven)
|
|
oddK = mm_sub_epi16(v255high, sourceOdd)
|
|
|
|
var
|
|
backdropEven = mm_slli_epi16(backdrop, 8)
|
|
backdropOdd = mm_and_si128(backdrop, oddMask)
|
|
|
|
# backdrop * k
|
|
backdropEven = mm_mulhi_epu16(backdropEven, evenK)
|
|
backdropOdd = mm_mulhi_epu16(backdropOdd, oddK)
|
|
|
|
# div 255
|
|
backdropEven = mm_srli_epi16(mm_mulhi_epu16(backdropEven, div255), 7)
|
|
backdropOdd = mm_srli_epi16(mm_mulhi_epu16(backdropOdd, div255), 7)
|
|
|
|
# Shift from high to low bits
|
|
sourceEven = mm_srli_epi16(sourceEven, 8)
|
|
sourceOdd = mm_srli_epi16(sourceOdd, 8)
|
|
|
|
let
|
|
blendedEven = mm_add_epi16(sourceEven, backdropEven)
|
|
blendedOdd = mm_add_epi16(sourceOdd, backdropOdd)
|
|
|
|
mm_or_si128(blendedEven, mm_slli_epi16(blendedOdd, 8))
|
|
|
|
proc maskMaskSimd(backdrop, source: M128i): M128i =
|
|
let
|
|
oddMask = mm_set1_epi16(cast[int16](0xff00))
|
|
div255 = mm_set1_epi16(cast[int16](0x8081))
|
|
sourceEven = mm_slli_epi16(source, 8)
|
|
sourceOdd = mm_and_si128(source, oddMask)
|
|
|
|
var
|
|
backdropEven = mm_slli_epi16(backdrop, 8)
|
|
backdropOdd = mm_and_si128(backdrop, oddMask)
|
|
|
|
# backdrop * source
|
|
backdropEven = mm_mulhi_epu16(backdropEven, sourceEven)
|
|
backdropOdd = mm_mulhi_epu16(backdropOdd, sourceOdd)
|
|
|
|
# div 255
|
|
backdropEven = mm_srli_epi16(mm_mulhi_epu16(backdropEven, div255), 7)
|
|
backdropOdd = mm_srli_epi16(mm_mulhi_epu16(backdropOdd, div255), 7)
|
|
|
|
mm_or_si128(backdropEven, mm_slli_epi16(backdropOdd, 8))
|
|
|
|
proc maskerSimd*(blendMode: BlendMode): MaskerSimd {.raises: [PixieError].} =
|
|
## Returns a blend masking function with SIMD support.
|
|
case blendMode:
|
|
of bmNormal: maskNormalSimd
|
|
of bmMask: maskMaskSimd
|
|
of bmOverwrite: blendOverwriteSimd
|
|
else:
|
|
raise newException(PixieError, "No SIMD masker for " & $blendMode)
|
|
|
|
proc hasSimdMasker*(blendMode: BlendMode): bool {.inline, raises: [].} =
|
|
## Is there a blend masking function with SIMD support?
|
|
blendMode in {bmNormal, bmMask, bmOverwrite}
|
|
|
|
when defined(release):
|
|
{.pop.}
|