import algorithm, bumpy, chroma, pixie/images, print, sequtils, vmath, benchy import pixie, pixie/paths {.all.} printColors = false proc pixelCover(a0, b0: Vec2): float32 = ## Returns the amount of area a given segment sweeps to the right ## in a [0,0 to 1,1] box. var a = a0 b = b0 aI: Vec2 bI: Vec2 area: float32 = 0.0 # # Sort A on top. # if a.y > b.y: # let tmp = a # a = b # b = tmp # if (b.y < 0 or a.y > 1) or # Above or bellow, no effect. # (a.x >= 1 and b.x >= 1) or # To the right, no effect. # (a.y == b.y): # Horizontal line, no effect. # return 0 if (a.x < 0 and b.x < 0) or # Both to the left. (a.x == b.x): # Vertical line # Area of the rectangle: return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0)) else: # y = mm*x + bb let mm: float32 = (b.y - a.y) / (b.x - a.x) bb: float32 = a.y - mm * a.x if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1: # A is in pixel bounds. aI = a else: aI = vec2((0 - bb) / mm, 0) if aI.x < 0: let y = mm * 0 + bb # Area of the extra rectangle. area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1) aI = vec2(0, y.clamp(0, 1)) elif aI.x > 1: let y = mm * 1 + bb aI = vec2(1, y.clamp(0, 1)) if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1: # B is in pixel bounds. bI = b else: bI = vec2((1 - bb) / mm, 1) if bI.x < 0: let y = mm * 0 + bb # Area of the extra rectangle. area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1) bI = vec2(0, y.clamp(0, 1)) elif bI.x > 1: let y = mm * 1 + bb bI = vec2(1, y.clamp(0, 1)) area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y) return area proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} = ## Checks if the a segment intersects b segment. ## If it returns true, at will have point of intersection let s1 = a.to - a.at s2 = b.to - b.at denominator = (-s2.x * s1.y + s1.x * s2.y) s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator if s > 0 and s < 1 and t >= 0 and t <= 1: at = a.at + (t * s1) return true type Trapezoid = object nw, ne, se, sw: Vec2 proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} = result.x = sign(v.x) * round(abs(v.x) / n) * n result.y = sign(v.y) * round(abs(v.y) / n) * n proc fillPath2(mask: Mask, p: Path) = var polygons = p.commandsToShapes() const q = 1/256.0 # Creates segment q, quantize and remove horizontal lines. var segments1: seq[Segment] for shape in polygons: for s in shape.segments: var s = s s.at = s.at.roundBy(q) s.to = s.to.roundBy(q) if s.at.y != s.to.y: if s.at.y > s.to.y: # make sure segments always are at.y higher swap(s.at, s.to) segments1.add(s) segments1.sort(proc(a, b: Segment): int = cmp(a.at.y, b.at.y)) # Dumb way to compute cutLines # var cutLines: seq[float32] # for s in segments1: # if s.at.y notin cutLines: # cutLines.add s.at.y # if s.to.y notin cutLines: # cutLines.add s.to.y # cutLines.sort() # Compute cutLines var cutLines: seq[float32] last = segments1[0].at.y bottom = segments1[0].to.y cutLines.add(last) for s in segments1: if s.at.y != last: last = s.at.y cutLines.add(last) if bottom < s.to.y: bottom = s.to.y cutLines.add(bottom) #print cutLines var sweeps = newSeq[seq[Segment]](cutLines.len - 1) # dont add bottom cutLine lastSeg = 0 for i, sweep in sweeps.mpairs: #print "sweep", i, cutLines[i] while segments1[lastSeg].at.y == cutLines[i]: let s = segments1[lastSeg] #print s if s.to.y != cutLines[i + 1]: #print "needs cut?" quit() sweep.add(segments1[lastSeg]) inc lastSeg if lastSeg >= segments1.len: # Sort the last sweep by X break # Sort the sweep by X sweep.sort(proc(a, b: Segment): int = cmp(a.at.x, b.at.x)) proc fillCoverage(y: int, currCutLine: int, sweep: seq[Segment]) = # var i = 0 # let # sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] # yFracTop = (y.float - cutLines[currCutLine]) / sweepHeight # yFracBottom = (y.float + 1 - cutLines[currCutLine]) / sweepHeight # #print "cover", y, sweepHeight, yFrac # while i < sweep.len: # #print "fill", sweep[i].at.x, "..", sweep[i+1].at.x # let # minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFracTop) # maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFracTop) # minXf2 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFracBottom) # maxXf2 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFracBottom) # minXi1 = minXf1.floor.int # maxXi1 = maxXf1.floor.int # minXi2 = minXf2.floor.int # maxXi2 = maxXf2.floor.int # for x in min(minXi1, minXi2) .. max(maxXi1, maxXi2): # var a = 1.0f # # if x < max(minXi1, minXi2): # # a = 0.1 # # elif x > min(maxXi1, maxXi2): # # a = 0.1 # # else: # # a = 0.5 # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + (a * 255).uint8) # i += 2 # x10 slower # for x in 0 ..< mask.width: # for i, seg in sweep: # var area = pixelCover(seg.at - vec2(x.float32, y.float32), seg.to - vec2(x.float32, y.float32)) # if i mod 2 == 1: # area = -area # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + (area * 255).uint8) let quality = 5 for m in 0 ..< quality: let sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] yFrac = (y.float32 + (m.float32 / quality.float32) - cutLines[currCutLine]) / sweepHeight if yFrac < 0.0 or yFrac >= 1.0: continue var i = 0 while i < sweep.len: let minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFrac) maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFrac) minXi1 = minXf1.int maxXi1 = maxXf1.int for x in minXi1 ..< maxXi1: let backdrop = mask.getValueUnsafe(x, y) mask.setValueUnsafe(x, y, backdrop + (255 div quality).uint8) # if x == 100 and y == 165: # print backdrop, 255 div quality # print mask.getValueUnsafe(x, y) i += 2 # let # sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] # yFrac = (y.float32 - cutLines[currCutLine]) / sweepHeight # var i = 0 # while i < sweep.len: # let # minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFrac) # maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFrac) # minXi1 = minXf1.floor.int # maxXi1 = maxXf1.floor.int # for x in minXi1 .. maxXi1: # mask.setValueUnsafe(x, y, 255) # i += 2 var currCutLine = 0 for scanLine in cutLines[0].int ..< cutLines[^1].ceil.int: print scanLine, "..<", scanLine + 1 print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1] fillCoverage(scanLine, currCutLine, sweeps[currCutLine]) while cutLines[currCutLine + 1] < scanLine.float + 1.0: inc currCutLine print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1] fillCoverage(scanLine, currCutLine, sweeps[currCutLine]) # print sweeps[^1] # print cutLines # var segments: seq[Segment] # while segments1.len > 0: # #print segments1.len, segments.len # var s = segments1.pop() # var collision = false # for y in cutLines: # let scanLine = line(vec2(0, y), vec2(1, y)) # var at: Vec2 # if intersects(scanLine, s, at): # at = at.roundBy(q) # at.y = y # if s.at.y != at.y and s.to.y != at.y: # #print "seg2yline intersects!", a, y, at # collision = true # var s1 = segment(s.at, at) # var s2 = segment(at, s.to) # #print s.length, "->", s1.length, s2.length # segments1.add(s1) # segments1.add(s2) # break # if not collision: # # means its touching, not intersecting # segments.add(s) # # sort at/to in segments # # for s in segments.mitems: # # if s.at.y > s.to.y: # # swap(s.at, s.to) # #let blender = blendMode.blender() # for yScanLine in cutLines[0..^2]: # var scanSegments: seq[Segment] # for s in segments: # if s.at.y == yScanLine: # scanSegments.add(s) # scanSegments.sort(proc(a, b: Segment): int = # cmp(a.at.x, b.at.x)) # # if scanSegments.len mod 2 != 0: # # print "error???" # # print yScanLine # # print scanSegments # # quit() # # TODO: winding rules will go here # var trapezoids: seq[Trapezoid] # for i in 0 ..< scanSegments.len div 2: # let # a = scanSegments[i*2+0] # b = scanSegments[i*2+1] # assert a.at.y == b.at.y # assert a.to.y == b.to.y # #assert a.at.x < b.at.x # #assert a.to.x < b.to.x # trapezoids.add(Trapezoid( # nw: a.at, # ne: b.at, # se: b.to, # + vec2(0,0.7), # sw: a.to # + vec2(0,0.7) # )) # var i = 0 # while i < trapezoids.len: # let t = trapezoids[i] # # print t # let # nw = t.nw # ne = t.ne # se = t.se # sw = t.sw # let # height = sw.y - nw.y # minYf = nw.y # maxYf = sw.y # minYi = minYf.floor.int # maxYi = maxYf.floor.int # # print t # for y in minYi .. maxYi: # let # yFrac = (y.float - nw.y) / height # minXf = mix(nw.x, sw.x, yFrac) # maxXf = mix(ne.x, se.x, yFrac) # minXi = minXf.floor.int # maxXi = maxXf.floor.int # #print yFrac # # if not(minY.int == 58 or maxY.int == 58) or minX > 100: # # continue # var ay: float32 # if y == minYi and y == maxYi: # ay = maxYf - minYf # # print "middle", maxYf, minYf, a # #print "double", y, a, minY, maxY, round(a * 255) # elif y == minYi: # ay = (1 - (minYf - float32(minYi))) # # print "min y", minYf, minYi, a # #print "s", y, a, minY, round(a * 255) # elif y == maxYi: # ay = (maxYf - float32(maxYi)) # #print "max y", maxYf, maxYi, a # # print "e", y, a, maxY, round(a * 255) # else: # ay = 1.0 # for x in minXi .. maxXi: # var ax: float32 # # if x == minXi: # # a2 = (1 - (minXf - float32(minXi))) # # #a2 = 1.0 # # elif x == maxXi: # # a2 = (maxXf - float32(maxXi)) # # #a2 = 1.0 # # else: # # a2 = 1.0 # if x.float32 < max(nw.x, sw.x): # ax = 0.5 # elif x.float32 > min(ne.x, se.x): # ax = 0.25 # else: # ax = 1.0 # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + floor(255 * ay * ax).uint8) # # if x == 100 and y == 172: # # print backdrop, round(255 * a * a2).uint8 # # print mask.getValueUnsafe(x, y) # inc i block: # Rect print "rect" #var image = newImage(200, 200) # var p = Path() # p.moveTo(50.25, 50.25) # p.lineTo(50.25, 150.25) # p.lineTo(150.25, 150.25) # p.lineTo(150.25, 50.25) # p.closePath() var p = parsePath(""" M 20 60 A 40 40 90 0 1 100 60 A 40 40 90 0 1 180 60 Q 180 120 100 180 Q 20 120 20 60 z """) # image.fill(rgba(255, 255, 255, 255)) #image.fillPath2(p, color(0, 0, 0, 1)) var mask = newMask(200, 200) timeIt "rect trapezoids", 1: #for i in 0 ..< 100: mask.fill(0) mask.fillPath2(p) #image.fillPath2(p, color(0, 0, 0, 1)) mask.writeFile("experiments/trapezoids/rect_trapesoid.png") var mask2 = newMask(200, 200) timeIt "rect normal", 1: #for i in 0 ..< 100: mask2.fill(0) mask2.fillPath(p) mask2.writeFile("experiments/trapezoids/rect_scanline.png") let (score, image) = diff(mask.newImage, mask2.newImage) print score image.writeFile("experiments/trapezoids/rect_diff.png") # block: # # Rhombus # print "rhombus" # var image = newImage(200, 200) # image.fill(rgba(255, 255, 255, 255)) # var p = Path() # p.moveTo(100, 50) # p.lineTo(150, 100) # p.lineTo(100, 150) # p.lineTo(50, 100) # p.closePath() # image.fillPath2(p, color(0, 0, 0, 1)) # image.writeFile("experiments/trapezoids/rhombus.png") # block: # # heart # print "heart" # var image = newImage(400, 400) # image.fill(rgba(0, 0, 0, 0)) # var p = parsePath(""" # M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120 # Q 360 240 200 360 Q 40 240 40 120 z # """) # var mask = newMask(image) # mask.fillPath2(p) # image.draw(mask, blendMode = bmOverwrite) # image.writeFile("experiments/trapezoids/heart.png") # block: # # l # print "l" # var image = newImage(500, 800) # image.fill(rgba(255, 255, 255, 255)) # var p = parsePath(""" # M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z # """) # image.fillPath2(p, color(0, 0, 0, 1)) # image.writeFile("experiments/trapezoids/l.png") # block: # # g # print "g" # var image = newImage(500, 800) # image.fill(rgba(255, 255, 255, 255)) # var p = parsePath(""" # M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z # """) # image.fillPath2(p, color(0, 0, 0, 1)) # image.writeFile("experiments/trapezoids/g.png")