import pixie, pixie/paths, pixie/images, chroma, print, vmath, algorithm, sequtils, bumpy printColors = false proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} = ## Checks if the a segment intersects b segment. ## If it returns true, at will have point of intersection let s1 = a.to - a.at s2 = b.to - b.at denominator = (-s2.x * s1.y + s1.x * s2.y) s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator if s > 0 and s < 1 and t >= 0 and t <= 1: at = a.at + (t * s1) return true type Trapezoid = object nw, ne, se, sw: Vec2 proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} = result.x = sign(v.x) * round(abs(v.x) / n) * n result.y = sign(v.y) * round(abs(v.y) / n) * n proc pathToTrapezoids(p: Path): seq[Trapezoid] = var polygons = p.commands.commandsToPolygons() const q = 1/256.0 # Creates segment q, quantize and remove verticals. var segments1: seq[Segment] for shape in polygons: for s in shape.segments: var s = s s.at = s.at.roundBy(q) s.to = s.to.roundBy(q) if s.at.y != s.to.y: segments1.add(s) #print segments1 # Handle segments overlapping each other: # var segments1: seq[Segment] # while segments0.len > 0: # var a = segments0.pop() # var collision = false # for b in segments0: # if a != b: # var at: Vec2 # if a.intersectsInner(b, at): # print "seg2seg intersects!", a, b, at # quit() # if not collision: # segments1.add(a) # There is probably a clever way to insert-sort them. var yScanLines: seq[float32] for s in segments1: if s.at.y notin yScanLines: yScanLines.add s.at.y if s.to.y notin yScanLines: yScanLines.add s.to.y yScanLines.sort() var segments: seq[Segment] while segments1.len > 0: #print segments1.len, segments.len var s = segments1.pop() var collision = false for y in yScanLines: var at: Vec2 if intersects(line(vec2(0,y), vec2(1,y)), s, at): at = at.roundBy(q) at.y = y if s.at.y != at.y and s.to.y != at.y: #print "seg2yline intersects!", a, y, at collision = true var s1 = segment(s.at, at) var s2 = segment(at, s.to) #print s.length, "->", s1.length, s2.length segments1.add(s1) segments1.add(s2) break if not collision: segments.add(s) #print segments # sort at/to in segments for s in segments.mitems: if s.at.y > s.to.y: swap(s.at, s.to) #print segments #print yScanLines for yScanLine in yScanLines[0..^2]: var scanSegments: seq[Segment] for s in segments: if s.at.y == yScanLine: scanSegments.add(s) scanSegments.sort(proc(a, b: Segment): int = cmp(a.at.x, b.at.x)) if scanSegments.len mod 2 != 0: print "error???" print yScanLine print scanSegments quit() # if scanSegments.len == 0: # print "error???" # print yScanLine # print scanSegments # quit() # TODO: winding rules will go here for i in 0 ..< scanSegments.len div 2: let a = scanSegments[i*2+0] b = scanSegments[i*2+1] assert a.at.y == b.at.y assert a.to.y == b.to.y #assert a.at.x < b.at.x #assert a.to.x < b.to.x result.add( Trapezoid( nw: a.at, ne: b.at, se: b.to,# + vec2(0,0.7), sw: a.to# + vec2(0,0.7) ) ) proc trapFill(image: Image, t: Trapezoid, color: ColorRGBA) = # assert t.nw.y == t.ne.y # assert t.sw.y == t.se.y let height = t.sw.y - t.nw.y minY = clamp(t.nw.y, 0, image.height.float) maxY = clamp(t.sw.y, 0, image.height.float) for y in minY.int ..< maxY.int: var yRate, minX, maxX: float32 yRate = clamp((y.float - t.nw.y) / height, 0, 1) minX = clamp(lerp(t.nw.x, t.sw.x, yRate).round, 0, image.width.float) maxX = clamp(lerp(t.ne.x, t.se.x, yRate).round, 0, image.width.float) for x in minX.int ..< maxX.int: image.setRgbaUnsafe(x, y, color) proc drawTrapezoids(image: Image, trapezoids: seq[Trapezoid]) = for trapezoid in trapezoids: image.trapFill(trapezoid, rgba(0, 0, 0, 255)) # for trapezoid in trapezoids: # var p = newPath() # p.moveTo(trapezoid.nw) # p.lineTo(trapezoid.ne) # p.lineTo(trapezoid.se) # p.lineTo(trapezoid.sw) # p.closePath() # image.fillPath(p, rgba(0, 0, 0, 255)) # image.strokePath(p, rgba(255, 0, 0, 255)) block: # Rect print "rect" var image = newImage(200, 200) image.fill(rgba(255, 255, 255, 255)) var p = newPath() p.moveTo(50, 50) p.lineTo(50, 150) p.lineTo(150, 150) p.lineTo(150, 50) p.closePath() var trapezoids = p.pathToTrapezoids() image.drawTrapezoids(trapezoids) image.writeFile("trapezoids/rect.png") block: # Rhombus print "rhombus" var image = newImage(200, 200) image.fill(rgba(255, 255, 255, 255)) var p = newPath() p.moveTo(100, 50) p.lineTo(150, 100) p.lineTo(100, 150) p.lineTo(50, 100) p.closePath() var trapezoids = p.pathToTrapezoids() image.drawTrapezoids(trapezoids) image.writeFile("trapezoids/rhombus.png") block: # heart print "heart" var image = newImage(400, 400) image.fill(rgba(255, 255, 255, 255)) var p = parsePath(""" M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120 Q 360 240 200 360 Q 40 240 40 120 z """) var trapezoids = p.pathToTrapezoids() image.drawTrapezoids(trapezoids) image.writeFile("trapezoids/heart.png") block: # l print "l" var image = newImage(500, 800) image.fill(rgba(255, 255, 255, 255)) var p = parsePath(""" M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z """) #image.strokePath(p, rgba(0, 0, 0, 255)) var trapezoids = p.pathToTrapezoids() image.drawTrapezoids(trapezoids) image.writeFile("trapezoids/l.png") block: # g print "g" var image = newImage(500, 800) image.fill(rgba(255, 255, 255, 255)) var p = parsePath(""" M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z """) #image.strokePath(p, rgba(0, 0, 0, 255)) var trapezoids = p.pathToTrapezoids() image.drawTrapezoids(trapezoids) image.writeFile("trapezoids/g.png")