import algorithm, bumpy, chroma, pixie/images, print, sequtils, vmath, benchy import pixie, pixie/paths {.all.} printColors = false proc intersects*(a, b: Segment, at: var Vec2): bool {.inline.} = ## Checks if the a segment intersects b segment. ## If it returns true, at will have point of intersection let s1 = a.to - a.at s2 = b.to - b.at denominator = (-s2.x * s1.y + s1.x * s2.y) s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator if s > 0 and s < 1 and t > 0 and t < 1: at = a.at + (t * s1) return true proc pixelCover(a0, b0: Vec2): float32 = ## Returns the amount of area a given segment sweeps to the right ## in a [0,0 to 1,1] box. var a = a0 b = b0 aI: Vec2 bI: Vec2 area: float32 = 0.0 # # Sort A on top. # if a.y > b.y: # let tmp = a # a = b # b = tmp # if (b.y < 0 or a.y > 1) or # Above or bellow, no effect. # (a.x >= 1 and b.x >= 1) or # To the right, no effect. # (a.y == b.y): # Horizontal line, no effect. # return 0 if (a.x < 0 and b.x < 0) or # Both to the left. (a.x == b.x): # Vertical line # Area of the rectangle: return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0)) else: # y = mm*x + bb let mm: float32 = (b.y - a.y) / (b.x - a.x) bb: float32 = a.y - mm * a.x if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1: # A is in pixel bounds. aI = a else: aI = vec2((0 - bb) / mm, 0) if aI.x < 0: let y = mm * 0 + bb # Area of the extra rectangle. area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1) aI = vec2(0, y.clamp(0, 1)) elif aI.x > 1: let y = mm * 1 + bb aI = vec2(1, y.clamp(0, 1)) if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1: # B is in pixel bounds. bI = b else: bI = vec2((1 - bb) / mm, 1) if bI.x < 0: let y = mm * 0 + bb # Area of the extra rectangle. area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1) bI = vec2(0, y.clamp(0, 1)) elif bI.x > 1: let y = mm * 1 + bb bI = vec2(1, y.clamp(0, 1)) area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y) return area proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} = ## Checks if the a segment intersects b segment. ## If it returns true, at will have point of intersection let s1 = a.to - a.at s2 = b.to - b.at denominator = (-s2.x * s1.y + s1.x * s2.y) s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator if s > 0 and s < 1 and t >= 0 and t <= 1: at = a.at + (t * s1) return true type Trapezoid = object nw, ne, se, sw: Vec2 Line = object #m, x, b: float32 atx, tox: float32 proc toLine(s: Segment): Line = var line = Line() # y = mx + b line.atx = s.at.x line.tox = s.to.x # line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x) # line.b = s.at.y - line.m * s.at.x return line proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} = result.x = sign(v.x) * round(abs(v.x) / n) * n result.y = sign(v.y) * round(abs(v.y) / n) * n proc fillPath2(mask: Mask, p: Path) = var polygons = p.commandsToShapes() const q = 1/256.0 # Creates segment q, quantize and remove horizontal lines. var segments1: seq[Segment] for shape in polygons: for s in shape.segments: var s = s s.at = s.at.roundBy(q) s.to = s.to.roundBy(q) if s.at.y != s.to.y: if s.at.y > s.to.y: # make sure segments always are at.y higher swap(s.at, s.to) segments1.add(s) segments1.sort(proc(a, b: Segment): int = cmp(a.at.y, b.at.y)) # Compute cutLines var cutLines: seq[float32] last = segments1[0].at.y bottom = segments1[0].to.y cutLines.add(last) for s in segments1: if s.at.y != last: last = s.at.y cutLines.add(last) if bottom < s.to.y: bottom = s.to.y cutLines.add(bottom) #print cutLines var sweeps = newSeq[seq[Line]](cutLines.len - 1) # dont add bottom cutLine lastSeg = 0 for i, sweep in sweeps.mpairs: #print "sweep", i, cutLines[i] while segments1[lastSeg].at.y == cutLines[i]: let s = segments1[lastSeg] #print s if s.to.y != cutLines[i + 1]: #print "needs cut?" quit() sweep.add(toLine(segments1[lastSeg])) inc lastSeg if lastSeg >= segments1.len: # Sort the last sweep by X break # Sort the sweep by X sweep.sort proc(a, b: Line): int = result = cmp(a.atx, b.atx) if result == 0: result = cmp(a.tox, b.tox) #print sweeps proc fillCoverage(y: int, currCutLine: int, sweep: seq[Line]) = let sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] yFracTop = (y.float32 - cutLines[currCutLine]) / sweepHeight yFracBottom = (y.float32 + 1 - cutLines[currCutLine]) / sweepHeight var i = 0 while i < sweep.len: let nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop) neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop) swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom) seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom) minWi = min(nwX, swX).int maxWi = max(nwX, swX).ceil.int minEi = min(neX, seX).int maxEi = max(neX, seX).ceil.int template write(x, y: int, alpha: float32) = let backdrop = mask.getValueUnsafe(x, y) mask.setValueUnsafe(x, y, backdrop + (alpha * 255).uint8) let nw = vec2(sweep[i+0].atx, cutLines[currCutLine]) sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1]) for x in minWi ..< maxWi: var area = pixelCover(nw - vec2(x.float32, y.float32), sw - vec2(x.float32, y.float32)) write(x, y, area) let x = maxWi var midArea = pixelCover(nw - vec2(x.float32, y.float32), sw - vec2(x.float32, y.float32)) for x in maxWi ..< minEi: write(x, y, midArea) let ne = vec2(sweep[i+1].atx, cutLines[currCutLine]) se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1]) for x in minEi ..< maxEi: var area = midArea - pixelCover(ne - vec2(x.float32, y.float32), se - vec2(x.float32, y.float32)) write(x, y, area) i += 2 # ## x10 slower # for x in 0 ..< mask.width: # for i, line in sweep: # let # segat = vec2(line.atx, cutLines[currCutLine]) # segto = vec2(line.tox, cutLines[currCutLine + 1]) # var area = pixelCover(segat - vec2(x.float32, y.float32), segto - vec2(x.float32, y.float32)) # if i mod 2 == 1: # area = -area # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + (area * 255).uint8) # var i = 0 # let # sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] # yFracTop = (y.float32 - cutLines[currCutLine]) / sweepHeight # yFracBottom = (y.float32 + 1 - cutLines[currCutLine]) / sweepHeight # #print "cover", y, sweepHeight, yFrac # while i < sweep.len: # #print "fill", sweep[i].at.x, "..", sweep[i+1].at.x # var ay = 1.0.float32 # if y.float32 < cutLines[currCutLine]: # let a2 = cutLines[currCutLine] - y.float32 # #print "cut from top", y.float, cutLines[currCutLine], a2 # ay *= a2 # if y.float32 + 1 > cutLines[currCutLine + 1]: # let a2 = (y.float32 + 1) - cutLines[currCutLine + 1] # #print "cut from bottom", y.float, cutLines[currCutLine], a2 # ay *= a2 # #if y == 20: # # print "--", y # template write(x, y: int, alpha: float32) = # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + (ay * alpha * 255).uint8) # let # nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop) # neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop) # swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom) # seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom) # # minW = min(nwX, swX) # # maxW = max(nwX, swX) # # minE = min(neX, seX) # # maxE = max(neX, seX) # var # endWAt: float32 = 0 # endWTo: float32 = 0 # endWArea: float32 = 0 # slopeWUp = swX < nwX # slopeWAt: float32 = 0 # slopeWTo: float32 = 0 # slopeWArea: float32 = 0 # slopeWRate: float32 = 0 # transitionWAt: float32 = 0 # transitionWTo: float32 = 0 # transitionWArea: float32 = 0 # fillAt: float32 = 0 # fillTo: float32 = 0 # transitionEAt: float32 = 0 # transitionETo: float32 = 0 # transitionEArea: float32 = 0 # slopeEUp = seX < neX # slopeEAt: float32 = 0 # slopeETo: float32 = 0 # slopeEArea: float32 = 0 # slopeERate: float32 = 0 # endEAt: float32 = 0 # endETo: float32 = 0 # endEArea: float32 = 0 # if slopeWUp: # endWAt = swX.floor # endWTo = swX.ceil # slopeWAt = endWTo # slopeWTo = nwX.floor # transitionWAt = slopeWAt # transitionWTo = nwX.ceil # fillAt = transitionWTo # else: # endWAt = nwX.floor # endWTo = nwX.ceil # slopeWAt = endWTo # slopeWTo = swX.floor # transitionWAt = slopeWAt # transitionWTo = swX.ceil # fillAt = transitionWTo # if slopeEUp: # fillTo = seX.floor # transitionEAt = fillTo # transitionETo = seX.ceil # slopeEAt = transitionETo # slopeETo = neX.floor # endEAt = slopeETo # endETo = neX.ceil # else: # fillTo = neX.floor # transitionEAt = fillTo # transitionETo = neX.ceil # slopeEAt = transitionETo # slopeETo = seX.floor # endEAt = slopeETo # endETo = seX.ceil # let # segat = vec2(line.atx, cutLines[currCutLine]) # segto = vec2(line.tox, cutLines[currCutLine + 1]) # var area = pixelCover(segat - vec2(x.float32, y.float32), segto - vec2(x.float32, y.float32)) # if i mod 2 == 1: # area = -area # #print endWAt, slopeWAt, transitionWAt, fillAt, fillTo, transitionEAt, slopeEAt, endEAt # # if nwX < swX: # # print nwX.int, swX.int # # for x in nwX.int ..< swX.int: # # var a = 0.5 # ((x.float32 - nwX) / (swX - nwX)) # # #print a # # write(x, y, a.clamp(0, a)) # # else: # # for x in swX.int ..< nwX.int: # # var a = 0.5 #((x.float32 - swX) / (nwX - swX)) # # #print a # # write(x, y, a.clamp(0, a)) # #write(wX.int, y, 1 - (wX - wX.floor)) # # for x in endWAt.int ..< endWTo.int: # # write(x, y, 0.1) # # for x in slopeWAt.int ..< slopeWTo.int: # # write(x, y, 0.25) # # for x in transitionWAt.int ..< transitionWTo.int: # # write(x, y, 0.50) # for x in fillAt.int ..< fillTo.int: # write(x, y, 1) # # for x in transitionEAt.int ..< transitionETo.int: # # write(x, y, 0.50) # # for x in slopeEAt.int ..< slopeETo.int: # # write(x, y, 0.25) # # for x in endEAt.int ..< endETo.int: # # write(x, y, 0.1) # # print 1 - (eX - eX.floor) # # write(eX.int - 1, y, 1 - (eX - eX.floor)) # # if neX < seX: # # for x in neX.int ..< seX.int: # # var a = 0.5 # ((neX - x.float32) / (seX - neX)) # # #print a # # write(x, y, a.clamp(0, a)) # # else: # # for x in seX.int ..< neX.int: # # var a = 0.5 # ((seX - x.float32) / (neX - seX)) # # #print a # # write(x, y, a.clamp(0, a)) # i += 2 # let quality = 5 # for m in 0 ..< quality: # let # sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] # yFrac = (y.float32 + (m.float32 / quality.float32) - cutLines[currCutLine]) / sweepHeight # if yFrac < 0.0 or yFrac >= 1.0: # continue # var i = 0 # while i < sweep.len: # let # minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFrac) # maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFrac) # minXi1 = minXf1.int # maxXi1 = maxXf1.int # for x in minXi1 ..< maxXi1: # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + (255 div quality).uint8) # # if x == 100 and y == 165: # # print backdrop, 255 div quality # # print mask.getValueUnsafe(x, y) # i += 2 # let # sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] # yFrac = (y.float32 - cutLines[currCutLine]) / sweepHeight # var i = 0 # while i < sweep.len: # let # minXf1 = mix(sweep[i+0].atx, sweep[i+0].tox, yFrac) # maxXf1 = mix(sweep[i+1].atx, sweep[i+1].tox, yFrac) # minXi1 = minXf1.floor.int # maxXi1 = maxXf1.floor.int # for x in minXi1 .. maxXi1: # mask.setValueUnsafe(x, y, 255) # i += 2 var currCutLine = 0 for scanLine in cutLines[0].int ..< cutLines[^1].ceil.int: #print scanLine, "..<", scanLine + 1 #print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1] fillCoverage(scanLine, currCutLine, sweeps[currCutLine]) while cutLines[currCutLine + 1] < scanLine.float + 1.0: inc currCutLine if currCutLine == sweeps.len: break #print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1] fillCoverage(scanLine, currCutLine, sweeps[currCutLine]) # print sweeps[^1] # print cutLines # var segments: seq[Segment] # while segments1.len > 0: # #print segments1.len, segments.len # var s = segments1.pop() # var collision = false # for y in cutLines: # let scanLine = line(vec2(0, y), vec2(1, y)) # var at: Vec2 # if intersects(scanLine, s, at): # at = at.roundBy(q) # at.y = y # if s.at.y != at.y and s.to.y != at.y: # #print "seg2yline intersects!", a, y, at # collision = true # var s1 = segment(s.at, at) # var s2 = segment(at, s.to) # #print s.length, "->", s1.length, s2.length # segments1.add(s1) # segments1.add(s2) # break # if not collision: # # means its touching, not intersecting # segments.add(s) # # sort at/to in segments # # for s in segments.mitems: # # if s.at.y > s.to.y: # # swap(s.at, s.to) # #let blender = blendMode.blender() # for yScanLine in cutLines[0..^2]: # var scanSegments: seq[Segment] # for s in segments: # if s.at.y == yScanLine: # scanSegments.add(s) # scanSegments.sort(proc(a, b: Segment): int = # cmp(a.at.x, b.at.x)) # # if scanSegments.len mod 2 != 0: # # print "error???" # # print yScanLine # # print scanSegments # # quit() # # TODO: winding rules will go here # var trapezoids: seq[Trapezoid] # for i in 0 ..< scanSegments.len div 2: # let # a = scanSegments[i*2+0] # b = scanSegments[i*2+1] # assert a.at.y == b.at.y # assert a.to.y == b.to.y # #assert a.at.x < b.at.x # #assert a.to.x < b.to.x # trapezoids.add(Trapezoid( # nw: a.at, # ne: b.at, # se: b.to, # + vec2(0,0.7), # sw: a.to # + vec2(0,0.7) # )) # var i = 0 # while i < trapezoids.len: # let t = trapezoids[i] # # print t # let # nw = t.nw # ne = t.ne # se = t.se # sw = t.sw # let # height = sw.y - nw.y # minYf = nw.y # maxYf = sw.y # minYi = minYf.floor.int # maxYi = maxYf.floor.int # # print t # for y in minYi .. maxYi: # let # yFrac = (y.float - nw.y) / height # minXf = mix(nw.x, sw.x, yFrac) # maxXf = mix(ne.x, se.x, yFrac) # minXi = minXf.floor.int # maxXi = maxXf.floor.int # #print yFrac # # if not(minY.int == 58 or maxY.int == 58) or minX > 100: # # continue # var ay: float32 # if y == minYi and y == maxYi: # ay = maxYf - minYf # # print "middle", maxYf, minYf, a # #print "double", y, a, minY, maxY, round(a * 255) # elif y == minYi: # ay = (1 - (minYf - float32(minYi))) # # print "min y", minYf, minYi, a # #print "s", y, a, minY, round(a * 255) # elif y == maxYi: # ay = (maxYf - float32(maxYi)) # #print "max y", maxYf, maxYi, a # # print "e", y, a, maxY, round(a * 255) # else: # ay = 1.0 # for x in minXi .. maxXi: # var ax: float32 # # if x == minXi: # # a2 = (1 - (minXf - float32(minXi))) # # #a2 = 1.0 # # elif x == maxXi: # # a2 = (maxXf - float32(maxXi)) # # #a2 = 1.0 # # else: # # a2 = 1.0 # if x.float32 < max(nw.x, sw.x): # ax = 0.5 # elif x.float32 > min(ne.x, se.x): # ax = 0.25 # else: # ax = 1.0 # let backdrop = mask.getValueUnsafe(x, y) # mask.setValueUnsafe(x, y, backdrop + floor(255 * ay * ax).uint8) # # if x == 100 and y == 172: # # print backdrop, round(255 * a * a2).uint8 # # print mask.getValueUnsafe(x, y) # inc i block: # Rect print "rect" #var image = newImage(200, 200) # rect # var p = Path() # p.moveTo(50.5, 50.5) # p.lineTo(50.5, 150.5) # p.lineTo(150.5, 150.5) # p.lineTo(150.5, 50.5) # p.closePath() ## rhobus var p = Path() p.moveTo(100, 50) p.lineTo(150, 100) p.lineTo(100, 150) p.lineTo(50, 100) p.closePath() # ## heart # var p = parsePath(""" # M 20 60 # A 40 40 90 0 1 100 60 # A 40 40 90 0 1 180 60 # Q 180 120 100 180 # Q 20 120 20 60 # z # """) ## cricle # var p = Path() # p.arc(100, 100, 50, 0, PI * 2, true) # p.closePath() # image.fill(rgba(255, 255, 255, 255)) #image.fillPath2(p, color(0, 0, 0, 1)) var mask = newMask(200, 200) timeIt "rect sweeps", 100: for i in 0 ..< 100: mask.fill(0) mask.fillPath2(p) #image.fillPath2(p, color(0, 0, 0, 1)) mask.writeFile("experiments/trapezoids/output_sweep.png") var mask2 = newMask(200, 200) timeIt "rect scanline", 10: for i in 0 ..< 100: mask2.fill(0) mask2.fillPath(p) mask2.writeFile("experiments/trapezoids/output_scanline.png") let (score, image) = diff(mask.newImage, mask2.newImage) print score image.writeFile("experiments/trapezoids/output_diff.png") # block: # # Rhombus # print "rhombus" # var image = newImage(200, 200) # image.fill(rgba(255, 255, 255, 255)) # var p = Path() # p.moveTo(100, 50) # p.lineTo(150, 100) # p.lineTo(100, 150) # p.lineTo(50, 100) # p.closePath() # image.fillPath2(p, color(0, 0, 0, 1)) # image.writeFile("experiments/trapezoids/rhombus.png") # block: # # heart # print "heart" # var image = newImage(400, 400) # image.fill(rgba(0, 0, 0, 0)) # var p = parsePath(""" # M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120 # Q 360 240 200 360 Q 40 240 40 120 z # """) # var mask = newMask(image) # mask.fillPath2(p) # image.draw(mask, blendMode = bmOverwrite) # image.writeFile("experiments/trapezoids/heart.png") # block: # # l # print "l" # var image = newImage(500, 800) # image.fill(rgba(255, 255, 255, 255)) # var p = parsePath(""" # M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z # """) # image.fillPath2(p, color(0, 0, 0, 1)) # image.writeFile("experiments/trapezoids/l.png") # block: # # g # print "g" # var image = newImage(500, 800) # image.fill(rgba(255, 255, 255, 255)) # var p = parsePath(""" # M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z # """) # image.fillPath2(p, color(0, 0, 0, 1)) # image.writeFile("experiments/trapezoids/g.png")