Experiment with sweeps.

This commit is contained in:
treeform 2021-11-27 19:06:14 -08:00
parent 4b43f1fb35
commit f4bb34ee5e
13 changed files with 2174 additions and 132 deletions

749
experiments/sweeps.nim Normal file
View file

@ -0,0 +1,749 @@
import algorithm, bumpy, chroma, pixie/images, print,
sequtils, vmath, benchy
import pixie, pixie/paths {.all.}
printColors = false
proc intersects*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t > 0 and t < 1:
at = a.at + (t * s1)
return true
proc pixelCover(a0, b0: Vec2): float32 =
## Returns the amount of area a given segment sweeps to the right
## in a [0,0 to 1,1] box.
var
a = a0
b = b0
aI: Vec2
bI: Vec2
area: float32 = 0.0
# # Sort A on top.
# if a.y > b.y:
# let tmp = a
# a = b
# b = tmp
# if (b.y < 0 or a.y > 1) or # Above or bellow, no effect.
# (a.x >= 1 and b.x >= 1) or # To the right, no effect.
# (a.y == b.y): # Horizontal line, no effect.
# return 0
if (a.x < 0 and b.x < 0) or # Both to the left.
(a.x == b.x): # Vertical line
# Area of the rectangle:
return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0))
else:
# y = mm*x + bb
let
mm: float32 = (b.y - a.y) / (b.x - a.x)
bb: float32 = a.y - mm * a.x
if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1:
# A is in pixel bounds.
aI = a
else:
aI = vec2((0 - bb) / mm, 0)
if aI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1)
aI = vec2(0, y.clamp(0, 1))
elif aI.x > 1:
let y = mm * 1 + bb
aI = vec2(1, y.clamp(0, 1))
if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1:
# B is in pixel bounds.
bI = b
else:
bI = vec2((1 - bb) / mm, 1)
if bI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1)
bI = vec2(0, y.clamp(0, 1))
elif bI.x > 1:
let y = mm * 1 + bb
bI = vec2(1, y.clamp(0, 1))
area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y)
return area
proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t >= 0 and t <= 1:
at = a.at + (t * s1)
return true
type
Trapezoid = object
nw, ne, se, sw: Vec2
Line = object
#m, x, b: float32
atx, tox: float32
proc toLine(s: Segment): Line =
var line = Line()
# y = mx + b
line.atx = s.at.x
line.tox = s.to.x
# line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x)
# line.b = s.at.y - line.m * s.at.x
return line
proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} =
result.x = sign(v.x) * round(abs(v.x) / n) * n
result.y = sign(v.y) * round(abs(v.y) / n) * n
proc fillPath2(mask: Mask, p: Path) =
var polygons = p.commandsToShapes()
const q = 1/256.0
# Creates segment q, quantize and remove horizontal lines.
var segments1: seq[Segment]
for shape in polygons:
for s in shape.segments:
var s = s
s.at = s.at.roundBy(q)
s.to = s.to.roundBy(q)
if s.at.y != s.to.y:
if s.at.y > s.to.y:
# make sure segments always are at.y higher
swap(s.at, s.to)
segments1.add(s)
segments1.sort(proc(a, b: Segment): int = cmp(a.at.y, b.at.y))
# Compute cutLines
var
cutLines: seq[float32]
last = segments1[0].at.y
bottom = segments1[0].to.y
cutLines.add(last)
for s in segments1:
if s.at.y != last:
last = s.at.y
cutLines.add(last)
if bottom < s.to.y:
bottom = s.to.y
cutLines.add(bottom)
#print cutLines
var
sweeps = newSeq[seq[Line]](cutLines.len - 1) # dont add bottom cutLine
lastSeg = 0
for i, sweep in sweeps.mpairs:
#print "sweep", i, cutLines[i]
while segments1[lastSeg].at.y == cutLines[i]:
let s = segments1[lastSeg]
#print s
if s.to.y != cutLines[i + 1]:
#print "needs cut?"
quit()
sweep.add(toLine(segments1[lastSeg]))
inc lastSeg
if lastSeg >= segments1.len:
# Sort the last sweep by X
break
# Sort the sweep by X
sweep.sort proc(a, b: Line): int =
result = cmp(a.atx, b.atx)
if result == 0:
result = cmp(a.tox, b.tox)
#print sweeps
proc fillCoverage(y: int, currCutLine: int, sweep: seq[Line]) =
let
sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
yFracTop = (y.float32 - cutLines[currCutLine]) / sweepHeight
yFracBottom = (y.float32 + 1 - cutLines[currCutLine]) / sweepHeight
var i = 0
while i < sweep.len:
let
nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop)
neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop)
swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom)
seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom)
minWi = min(nwX, swX).int
maxWi = max(nwX, swX).ceil.int
minEi = min(neX, seX).int
maxEi = max(neX, seX).ceil.int
template write(x, y: int, alpha: float32) =
let backdrop = mask.getValueUnsafe(x, y)
mask.setValueUnsafe(x, y, backdrop + (alpha * 255).uint8)
let
nw = vec2(sweep[i+0].atx, cutLines[currCutLine])
sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1])
for x in minWi ..< maxWi:
var area = pixelCover(nw - vec2(x.float32, y.float32), sw - vec2(x.float32, y.float32))
write(x, y, area)
let x = maxWi
var midArea = pixelCover(nw - vec2(x.float32, y.float32), sw - vec2(x.float32, y.float32))
for x in maxWi ..< minEi:
write(x, y, midArea)
let
ne = vec2(sweep[i+1].atx, cutLines[currCutLine])
se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1])
for x in minEi ..< maxEi:
var area = midArea - pixelCover(ne - vec2(x.float32, y.float32), se - vec2(x.float32, y.float32))
write(x, y, area)
i += 2
# ## x10 slower
# for x in 0 ..< mask.width:
# for i, line in sweep:
# let
# segat = vec2(line.atx, cutLines[currCutLine])
# segto = vec2(line.tox, cutLines[currCutLine + 1])
# var area = pixelCover(segat - vec2(x.float32, y.float32), segto - vec2(x.float32, y.float32))
# if i mod 2 == 1:
# area = -area
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + (area * 255).uint8)
# var i = 0
# let
# sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
# yFracTop = (y.float32 - cutLines[currCutLine]) / sweepHeight
# yFracBottom = (y.float32 + 1 - cutLines[currCutLine]) / sweepHeight
# #print "cover", y, sweepHeight, yFrac
# while i < sweep.len:
# #print "fill", sweep[i].at.x, "..", sweep[i+1].at.x
# var ay = 1.0.float32
# if y.float32 < cutLines[currCutLine]:
# let a2 = cutLines[currCutLine] - y.float32
# #print "cut from top", y.float, cutLines[currCutLine], a2
# ay *= a2
# if y.float32 + 1 > cutLines[currCutLine + 1]:
# let a2 = (y.float32 + 1) - cutLines[currCutLine + 1]
# #print "cut from bottom", y.float, cutLines[currCutLine], a2
# ay *= a2
# #if y == 20:
# # print "--", y
# template write(x, y: int, alpha: float32) =
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + (ay * alpha * 255).uint8)
# let
# nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop)
# neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop)
# swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom)
# seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom)
# # minW = min(nwX, swX)
# # maxW = max(nwX, swX)
# # minE = min(neX, seX)
# # maxE = max(neX, seX)
# var
# endWAt: float32 = 0
# endWTo: float32 = 0
# endWArea: float32 = 0
# slopeWUp = swX < nwX
# slopeWAt: float32 = 0
# slopeWTo: float32 = 0
# slopeWArea: float32 = 0
# slopeWRate: float32 = 0
# transitionWAt: float32 = 0
# transitionWTo: float32 = 0
# transitionWArea: float32 = 0
# fillAt: float32 = 0
# fillTo: float32 = 0
# transitionEAt: float32 = 0
# transitionETo: float32 = 0
# transitionEArea: float32 = 0
# slopeEUp = seX < neX
# slopeEAt: float32 = 0
# slopeETo: float32 = 0
# slopeEArea: float32 = 0
# slopeERate: float32 = 0
# endEAt: float32 = 0
# endETo: float32 = 0
# endEArea: float32 = 0
# if slopeWUp:
# endWAt = swX.floor
# endWTo = swX.ceil
# slopeWAt = endWTo
# slopeWTo = nwX.floor
# transitionWAt = slopeWAt
# transitionWTo = nwX.ceil
# fillAt = transitionWTo
# else:
# endWAt = nwX.floor
# endWTo = nwX.ceil
# slopeWAt = endWTo
# slopeWTo = swX.floor
# transitionWAt = slopeWAt
# transitionWTo = swX.ceil
# fillAt = transitionWTo
# if slopeEUp:
# fillTo = seX.floor
# transitionEAt = fillTo
# transitionETo = seX.ceil
# slopeEAt = transitionETo
# slopeETo = neX.floor
# endEAt = slopeETo
# endETo = neX.ceil
# else:
# fillTo = neX.floor
# transitionEAt = fillTo
# transitionETo = neX.ceil
# slopeEAt = transitionETo
# slopeETo = seX.floor
# endEAt = slopeETo
# endETo = seX.ceil
# let
# segat = vec2(line.atx, cutLines[currCutLine])
# segto = vec2(line.tox, cutLines[currCutLine + 1])
# var area = pixelCover(segat - vec2(x.float32, y.float32), segto - vec2(x.float32, y.float32))
# if i mod 2 == 1:
# area = -area
# #print endWAt, slopeWAt, transitionWAt, fillAt, fillTo, transitionEAt, slopeEAt, endEAt
# # if nwX < swX:
# # print nwX.int, swX.int
# # for x in nwX.int ..< swX.int:
# # var a = 0.5 # ((x.float32 - nwX) / (swX - nwX))
# # #print a
# # write(x, y, a.clamp(0, a))
# # else:
# # for x in swX.int ..< nwX.int:
# # var a = 0.5 #((x.float32 - swX) / (nwX - swX))
# # #print a
# # write(x, y, a.clamp(0, a))
# #write(wX.int, y, 1 - (wX - wX.floor))
# # for x in endWAt.int ..< endWTo.int:
# # write(x, y, 0.1)
# # for x in slopeWAt.int ..< slopeWTo.int:
# # write(x, y, 0.25)
# # for x in transitionWAt.int ..< transitionWTo.int:
# # write(x, y, 0.50)
# for x in fillAt.int ..< fillTo.int:
# write(x, y, 1)
# # for x in transitionEAt.int ..< transitionETo.int:
# # write(x, y, 0.50)
# # for x in slopeEAt.int ..< slopeETo.int:
# # write(x, y, 0.25)
# # for x in endEAt.int ..< endETo.int:
# # write(x, y, 0.1)
# # print 1 - (eX - eX.floor)
# # write(eX.int - 1, y, 1 - (eX - eX.floor))
# # if neX < seX:
# # for x in neX.int ..< seX.int:
# # var a = 0.5 # ((neX - x.float32) / (seX - neX))
# # #print a
# # write(x, y, a.clamp(0, a))
# # else:
# # for x in seX.int ..< neX.int:
# # var a = 0.5 # ((seX - x.float32) / (neX - seX))
# # #print a
# # write(x, y, a.clamp(0, a))
# i += 2
# let quality = 5
# for m in 0 ..< quality:
# let
# sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
# yFrac = (y.float32 + (m.float32 / quality.float32) - cutLines[currCutLine]) / sweepHeight
# if yFrac < 0.0 or yFrac >= 1.0:
# continue
# var i = 0
# while i < sweep.len:
# let
# minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFrac)
# maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFrac)
# minXi1 = minXf1.int
# maxXi1 = maxXf1.int
# for x in minXi1 ..< maxXi1:
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + (255 div quality).uint8)
# # if x == 100 and y == 165:
# # print backdrop, 255 div quality
# # print mask.getValueUnsafe(x, y)
# i += 2
# let
# sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
# yFrac = (y.float32 - cutLines[currCutLine]) / sweepHeight
# var i = 0
# while i < sweep.len:
# let
# minXf1 = mix(sweep[i+0].atx, sweep[i+0].tox, yFrac)
# maxXf1 = mix(sweep[i+1].atx, sweep[i+1].tox, yFrac)
# minXi1 = minXf1.floor.int
# maxXi1 = maxXf1.floor.int
# for x in minXi1 .. maxXi1:
# mask.setValueUnsafe(x, y, 255)
# i += 2
var
currCutLine = 0
for scanLine in cutLines[0].int ..< cutLines[^1].ceil.int:
#print scanLine, "..<", scanLine + 1
#print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1]
fillCoverage(scanLine, currCutLine, sweeps[currCutLine])
while cutLines[currCutLine + 1] < scanLine.float + 1.0:
inc currCutLine
if currCutLine == sweeps.len:
break
#print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1]
fillCoverage(scanLine, currCutLine, sweeps[currCutLine])
# print sweeps[^1]
# print cutLines
# var segments: seq[Segment]
# while segments1.len > 0:
# #print segments1.len, segments.len
# var s = segments1.pop()
# var collision = false
# for y in cutLines:
# let scanLine = line(vec2(0, y), vec2(1, y))
# var at: Vec2
# if intersects(scanLine, s, at):
# at = at.roundBy(q)
# at.y = y
# if s.at.y != at.y and s.to.y != at.y:
# #print "seg2yline intersects!", a, y, at
# collision = true
# var s1 = segment(s.at, at)
# var s2 = segment(at, s.to)
# #print s.length, "->", s1.length, s2.length
# segments1.add(s1)
# segments1.add(s2)
# break
# if not collision:
# # means its touching, not intersecting
# segments.add(s)
# # sort at/to in segments
# # for s in segments.mitems:
# # if s.at.y > s.to.y:
# # swap(s.at, s.to)
# #let blender = blendMode.blender()
# for yScanLine in cutLines[0..^2]:
# var scanSegments: seq[Segment]
# for s in segments:
# if s.at.y == yScanLine:
# scanSegments.add(s)
# scanSegments.sort(proc(a, b: Segment): int =
# cmp(a.at.x, b.at.x))
# # if scanSegments.len mod 2 != 0:
# # print "error???"
# # print yScanLine
# # print scanSegments
# # quit()
# # TODO: winding rules will go here
# var trapezoids: seq[Trapezoid]
# for i in 0 ..< scanSegments.len div 2:
# let
# a = scanSegments[i*2+0]
# b = scanSegments[i*2+1]
# assert a.at.y == b.at.y
# assert a.to.y == b.to.y
# #assert a.at.x < b.at.x
# #assert a.to.x < b.to.x
# trapezoids.add(Trapezoid(
# nw: a.at,
# ne: b.at,
# se: b.to, # + vec2(0,0.7),
# sw: a.to # + vec2(0,0.7)
# ))
# var i = 0
# while i < trapezoids.len:
# let t = trapezoids[i]
# # print t
# let
# nw = t.nw
# ne = t.ne
# se = t.se
# sw = t.sw
# let
# height = sw.y - nw.y
# minYf = nw.y
# maxYf = sw.y
# minYi = minYf.floor.int
# maxYi = maxYf.floor.int
# # print t
# for y in minYi .. maxYi:
# let
# yFrac = (y.float - nw.y) / height
# minXf = mix(nw.x, sw.x, yFrac)
# maxXf = mix(ne.x, se.x, yFrac)
# minXi = minXf.floor.int
# maxXi = maxXf.floor.int
# #print yFrac
# # if not(minY.int == 58 or maxY.int == 58) or minX > 100:
# # continue
# var ay: float32
# if y == minYi and y == maxYi:
# ay = maxYf - minYf
# # print "middle", maxYf, minYf, a
# #print "double", y, a, minY, maxY, round(a * 255)
# elif y == minYi:
# ay = (1 - (minYf - float32(minYi)))
# # print "min y", minYf, minYi, a
# #print "s", y, a, minY, round(a * 255)
# elif y == maxYi:
# ay = (maxYf - float32(maxYi))
# #print "max y", maxYf, maxYi, a
# # print "e", y, a, maxY, round(a * 255)
# else:
# ay = 1.0
# for x in minXi .. maxXi:
# var ax: float32
# # if x == minXi:
# # a2 = (1 - (minXf - float32(minXi)))
# # #a2 = 1.0
# # elif x == maxXi:
# # a2 = (maxXf - float32(maxXi))
# # #a2 = 1.0
# # else:
# # a2 = 1.0
# if x.float32 < max(nw.x, sw.x):
# ax = 0.5
# elif x.float32 > min(ne.x, se.x):
# ax = 0.25
# else:
# ax = 1.0
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + floor(255 * ay * ax).uint8)
# # if x == 100 and y == 172:
# # print backdrop, round(255 * a * a2).uint8
# # print mask.getValueUnsafe(x, y)
# inc i
block:
# Rect
print "rect"
#var image = newImage(200, 200)
# rect
# var p = Path()
# p.moveTo(50.5, 50.5)
# p.lineTo(50.5, 150.5)
# p.lineTo(150.5, 150.5)
# p.lineTo(150.5, 50.5)
# p.closePath()
## rhobus
var p = Path()
p.moveTo(100, 50)
p.lineTo(150, 100)
p.lineTo(100, 150)
p.lineTo(50, 100)
p.closePath()
# ## heart
# var p = parsePath("""
# M 20 60
# A 40 40 90 0 1 100 60
# A 40 40 90 0 1 180 60
# Q 180 120 100 180
# Q 20 120 20 60
# z
# """)
## cricle
# var p = Path()
# p.arc(100, 100, 50, 0, PI * 2, true)
# p.closePath()
# image.fill(rgba(255, 255, 255, 255))
#image.fillPath2(p, color(0, 0, 0, 1))
var mask = newMask(200, 200)
timeIt "rect sweeps", 100:
for i in 0 ..< 100:
mask.fill(0)
mask.fillPath2(p)
#image.fillPath2(p, color(0, 0, 0, 1))
mask.writeFile("experiments/trapezoids/output_sweep.png")
var mask2 = newMask(200, 200)
timeIt "rect scanline", 10:
for i in 0 ..< 100:
mask2.fill(0)
mask2.fillPath(p)
mask2.writeFile("experiments/trapezoids/output_scanline.png")
let (score, image) = diff(mask.newImage, mask2.newImage)
print score
image.writeFile("experiments/trapezoids/output_diff.png")
# block:
# # Rhombus
# print "rhombus"
# var image = newImage(200, 200)
# image.fill(rgba(255, 255, 255, 255))
# var p = Path()
# p.moveTo(100, 50)
# p.lineTo(150, 100)
# p.lineTo(100, 150)
# p.lineTo(50, 100)
# p.closePath()
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/rhombus.png")
# block:
# # heart
# print "heart"
# var image = newImage(400, 400)
# image.fill(rgba(0, 0, 0, 0))
# var p = parsePath("""
# M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120
# Q 360 240 200 360 Q 40 240 40 120 z
# """)
# var mask = newMask(image)
# mask.fillPath2(p)
# image.draw(mask, blendMode = bmOverwrite)
# image.writeFile("experiments/trapezoids/heart.png")
# block:
# # l
# print "l"
# var image = newImage(500, 800)
# image.fill(rgba(255, 255, 255, 255))
# var p = parsePath("""
# M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z
# """)
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/l.png")
# block:
# # g
# print "g"
# var image = newImage(500, 800)
# image.fill(rgba(255, 255, 255, 255))
# var p = parsePath("""
# M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z
# """)
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/g.png")

481
experiments/sweeps2.nim Normal file
View file

@ -0,0 +1,481 @@
import algorithm, bumpy, chroma, pixie/images, print,
sequtils, vmath, benchy, fidget2/perf
import pixie, pixie/paths {.all.}
when defined(release):
{.push checks: off.}
proc pixelCover(a0, b0: Vec2): float32 =
## Returns the amount of area a given segment sweeps to the right
## in a [0,0 to 1,1] box.
var
a = a0
b = b0
aI: Vec2
bI: Vec2
area: float32 = 0.0
# # Sort A on top.
# if a.y > b.y:
# let tmp = a
# a = b
# b = tmp
# if (b.y < 0 or a.y > 1) or # Above or bellow, no effect.
# (a.x >= 1 and b.x >= 1) or # To the right, no effect.
# (a.y == b.y): # Horizontal line, no effect.
# return 0
if (a.x < 0 and b.x < 0) or # Both to the left.
(a.x == b.x): # Vertical line
# Area of the rectangle:
return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0))
else:
# y = mm*x + bb
let
mm: float32 = (b.y - a.y) / (b.x - a.x)
bb: float32 = a.y - mm * a.x
if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1:
# A is in pixel bounds.
aI = a
else:
aI = vec2((0 - bb) / mm, 0)
if aI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1)
aI = vec2(0, y.clamp(0, 1))
elif aI.x > 1:
let y = mm * 1 + bb
aI = vec2(1, y.clamp(0, 1))
if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1:
# B is in pixel bounds.
bI = b
else:
bI = vec2((1 - bb) / mm, 1)
if bI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1)
bI = vec2(0, y.clamp(0, 1))
elif bI.x > 1:
let y = mm * 1 + bb
bI = vec2(1, y.clamp(0, 1))
area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y)
return area
proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t > 0 and t < 1:
#print s, t
at = a.at + (t * s1)
return true
type
Trapezoid = object
nw, ne, se, sw: Vec2
Line = object
#m, x, b: float32
atx, tox: float32
winding: int16
proc toLine(s: (Segment, int16)): Line =
var line = Line()
# y = mx + b
line.atx = s[0].at.x
line.tox = s[0].to.x
line.winding = s[1]
# line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x)
# line.b = s.at.y - line.m * s.at.x
return line
proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} =
result.x = sign(v.x) * round(abs(v.x) / n) * n
result.y = sign(v.y) * round(abs(v.y) / n) * n
proc computeBounds(polygons: seq[seq[Vec2]]): Rect =
## Compute the bounds of the segments.
var
xMin = float32.high
xMax = float32.low
yMin = float32.high
yMax = float32.low
for segments in polygons:
for v in segments:
xMin = min(xMin, v.x)
xMax = max(xMax, v.x)
yMin = min(yMin, v.y)
yMax = max(yMax, v.y)
if xMin.isNaN() or xMax.isNaN() or yMin.isNaN() or yMax.isNaN():
discard
else:
result.x = xMin
result.y = yMin
result.w = xMax - xMin
result.h = yMax - yMin
proc binaryInsert(arr: var seq[float32], v: float32) =
if arr.len == 0:
arr.add(v)
return
var
L = 0
R = arr.len - 1
while L < R:
let m = (L + R) div 2
if arr[m] ~= v:
return
elif arr[m] < v:
L = m + 1
else: # arr[m] > v:
R = m - 1
if arr[L] ~= v:
return
elif arr[L] > v:
#print "insert", v, arr, L, R
arr.insert(v, L)
else:
#print "insert", v, arr, L, R
arr.insert(v, L + 1)
proc fillPath2(image: Image, p: Path, color: Color, windingRule = wrNonZero, blendMode = bmNormal) =
const q = 1/256.0
let rgbx = color.rgbx
var segments = p.commandsToShapes().shapesToSegments()
let
bounds = computeBounds(segments).snapToPixels()
startX = max(0, bounds.x.int)
# Create sorted segments and quantize.
segments.sort(proc(a, b: (Segment, int16)): int = cmp(a[0].at.y, b[0].at.y))
# Compute cut lines
var cutLines: seq[float32]
for s in segments:
cutLines.binaryInsert(s[0].at.y)
cutLines.binaryInsert(s[0].to.y)
var
sweeps = newSeq[seq[Line]](cutLines.len - 1) # dont add bottom cutLine
lastSeg = 0
i = 0
while i < sweeps.len:
#for i, sweep in sweeps.mpairs:
#print "sweep", i, cutLines[i]
if lastSeg < segments.len:
while segments[lastSeg][0].at.y == cutLines[i]:
let s = segments[lastSeg]
if s[0].at.y != s[0].to.y:
#print s
if s[0].to.y != cutLines[i + 1]:
#print "needs cut?", s
#quit("need to cut lines")
var at: Vec2
var seg = s[0]
for j in i ..< sweeps.len:
let y = cutLines[j + 1]
if intersects(line(vec2(0, y), vec2(1, y)), seg, at):
#print "cutting", j, seg
#print "add cut", j, segment(seg.at, at)
sweeps[j].add(toLine((segment(seg.at, at), s[1])))
seg = segment(at, seg.to)
else:
if seg.at.y != seg.to.y:
#print "add rest", j, segment(seg.at, seg.to)
sweeps[j].add(toLine(s))
# else:
# print "micro?"
break
else:
#print "add", s
sweeps[i].add(toLine(s))
inc lastSeg
if lastSeg >= segments.len:
break
inc i
i = 0
while i < sweeps.len:
for t in 0 ..< 10:
# keep cutting sweep
var needsCut = false
var cutterLine: float32 = 0
block doubleFor:
for a in sweeps[i]:
let aSeg = segment(vec2(a.atx, cutLines[i]), vec2(a.tox, cutLines[i+1]))
for b in sweeps[i]:
let bSeg = segment(vec2(b.atx, cutLines[i]), vec2(b.tox, cutLines[i+1]))
var at: Vec2
if intersectsInner(aSeg, bSeg, at):
needsCut = true
cutterLine = at.y
break doubleFor
if needsCut:
var
thisSweep = sweeps[i]
sweeps[i].setLen(0)
sweeps.insert(newSeq[Line](), i + 1)
for a in thisSweep:
let seg = segment(vec2(a.atx, cutLines[i]), vec2(a.tox, cutLines[i+1]))
var at: Vec2
if intersects(line(vec2(0, cutterLine), vec2(1, cutterLine)), seg, at):
sweeps[i+0].add(toLine((segment(seg.at, at), a.winding)))
sweeps[i+1].add(toLine((segment(at, seg.to), a.winding)))
cutLines.binaryInsert(cutterLine)
else:
break
inc i
i = 0
while i < sweeps.len:
# Sort the sweep by X
sweeps[i].sort proc(a, b: Line): int =
result = cmp(a.atx, b.atx)
if result == 0:
result = cmp(a.tox, b.tox)
# Do winding order
var
pen = 0
prevFill = false
j = 0
# print "sweep", i, "--------------"
while j < sweeps[i].len:
let a = sweeps[i][j]
# print a.winding
if a.winding == 1:
inc pen
if a.winding == -1:
dec pen
# print j, pen, prevFill, shouldFill(windingRule, pen)
let thisFill = shouldFill(windingRule, pen)
if prevFill == thisFill:
# remove this line
# print "remove", j
sweeps[i].delete(j)
continue
prevFill = thisFill
inc j
# print sweeps[i]
inc i
#print sweeps
# for s in 0 ..< sweeps.len:
# let
# y1 = cutLines[s]
# echo "M -100 ", y1
# echo "L 300 ", y1
# for line in sweeps[s]:
# let
# nw = vec2(line.atx, cutLines[s])
# sw = vec2(line.tox, cutLines[s + 1])
# echo "M ", nw.x, " ", nw.y
# echo "L ", sw.x, " ", sw.y
proc computeCoverage(
coverages: var seq[uint8],
y: int,
startX: int,
cutLines: seq[float32],
currCutLine: int,
sweep: seq[Line]
) =
# if sweep.len mod 2 != 0:
# return
let
sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
yFracTop = ((y.float32 - cutLines[currCutLine]) / sweepHeight).clamp(0, 1)
yFracBottom = ((y.float32 + 1 - cutLines[currCutLine]) / sweepHeight).clamp(0, 1)
var i = 0
while i < sweep.len:
let
nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop)
neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop)
swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom)
seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom)
minWi = min(nwX, swX).int
maxWi = max(nwX, swX).ceil.int
minEi = min(neX, seX).int
maxEi = max(neX, seX).ceil.int
let
nw = vec2(sweep[i+0].atx, cutLines[currCutLine])
sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1])
for x in minWi ..< maxWi:
var area = pixelCover(nw - vec2(x.float32, y.float32), sw - vec2(x.float32, y.float32))
coverages[x - startX] += (area * 255).uint8
let x = maxWi
var midArea = pixelCover(nw - vec2(x.float32, y.float32), sw - vec2(x.float32, y.float32))
var midArea8 = (midArea * 255).uint8
for x in maxWi ..< minEi:
coverages[x - startX] += midArea8
let
ne = vec2(sweep[i+1].atx, cutLines[currCutLine])
se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1])
for x in minEi ..< maxEi:
var area = midArea - pixelCover(ne - vec2(x.float32, y.float32), se - vec2(x.float32, y.float32))
coverages[x - startX] += (area * 255).uint8
i += 2
var
currCutLine = 0
coverages = newSeq[uint8](bounds.w.int)
for scanLine in cutLines[0].int ..< cutLines[^1].ceil.int:
zeroMem(coverages[0].addr, coverages.len)
coverages.computeCoverage(scanLine, startX, cutLines, currCutLine, sweeps[currCutLine])
while cutLines[currCutLine + 1] < scanLine.float + 1.0:
inc currCutLine
if currCutLine == sweeps.len:
break
coverages.computeCoverage(scanLine, startX, cutLines, currCutLine, sweeps[currCutLine])
image.fillCoverage(
rgbx,
startX = startX,
y = scanLine,
coverages,
blendMode
)
when defined(release):
{.pop.}
template test(name: string, p: Path, a: static int = 1, wr = wrNonZero) =
echo name
var image = newImage(200, 200)
timeIt " sweeps", a:
for i in 0 ..< a:
image.fill(color(0, 0, 0, 0))
image.fillPath2(p, color(1, 0, 0, 1), windingRule = wr)
image.writeFile("experiments/trapezoids/output_sweep.png")
var image2 = newImage(200, 200)
timeIt " scanline", a:
for i in 0 ..< a:
image2.fill(color(0, 0, 0, 0))
image2.fillPath(p, color(1, 0, 0, 1), windingRule = wr)
image2.writeFile("experiments/trapezoids/output_scanline.png")
let (score, diff) = diff(image, image2)
if score > 0.05:
echo "does not appear ot match"
diff.writeFile("experiments/trapezoids/output_diff.png")
var rect = Path()
rect.moveTo(50.5, 50.5)
rect.lineTo(50.5, 150.5)
rect.lineTo(150.5, 150.5)
rect.lineTo(150.5, 50.5)
rect.closePath()
var rhombus = Path()
rhombus.moveTo(100, 50)
rhombus.lineTo(150, 100)
rhombus.lineTo(100, 150)
rhombus.lineTo(50, 100)
rhombus.closePath()
var heart = parsePath("""
M 20 60
A 40 40 90 0 1 100 60
A 40 40 90 0 1 180 60
Q 180 120 100 180
Q 20 120 20 60
z
""")
var cricle = Path()
cricle.arc(100, 100, 50, 0, PI * 2, true)
cricle.closePath()
# Half arc (test cut lines)
var halfAarc = parsePath("""
M 25 25 C 85 25 85 125 25 125 z
""")
# Hour glass (test cross lines)
var hourGlass = parsePath("""
M 20 20 L 180 20 L 20 180 L 180 180 z
""")
# Hole
var hole = parsePath("""
M 40 40 L 40 160 L 160 160 L 160 40 z
M 120 80 L 120 120 L 80 120 L 80 80 z
""")
var holeEvenOdd = parsePath("""
M 40 40 L 40 160 L 160 160 L 160 40 z
M 80 80 L 80 120 L 120 120 L 120 80 z
""")
## g
var letterG = parsePath("""
M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z
""")
letterG.transform(scale(vec2(0.2, 0.2)))
when defined(bench):
test("rect", rect, 100)
test("rhombus", rhombus, 100)
test("heart", heart, 100)
test("cricle", cricle, 100)
test("halfAarc", halfAarc, 100)
test("hourGlass", hourGlass, 100)
test("hole", hole, 100)
test("holeEvenOdd", holeEvenOdd, 100, wr=wrNonZero)
test("holeEvenOdd", holeEvenOdd, 100, wr=wrEvenOdd)
test("letterG", letterG, 100)
else:
# test("rect", rect)
# test("rhombus", rhombus)
# test("heart", heart)
# test("cricle", cricle)
# test("halfAarc", halfAarc)
# test("hourGlass", hourGlass)
#test("hole", hole, wr=wrEvenOdd)
test("holeEvenOdd", holeEvenOdd, wr=wrNonZero)
test("holeEvenOdd", holeEvenOdd, wr=wrEvenOdd)
# test("letterG", letterG)

View file

@ -1,6 +1,9 @@
import algorithm, bumpy, chroma, pixie, pixie/images, pixie/paths, print,
sequtils, vmath
import algorithm, bumpy, chroma, pixie/images, print,
sequtils, vmath, benchy
import pixie, pixie/paths {.all.}
printColors = false
@ -25,7 +28,7 @@ proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} =
result.x = sign(v.x) * round(abs(v.x) / n) * n
result.y = sign(v.y) * round(abs(v.y) / n) * n
proc pathToTrapezoids(p: Path): seq[Trapezoid] =
proc fillPath2(mask: Mask, p: Path) =
var polygons = p.commandsToShapes()
@ -39,22 +42,10 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
s.at = s.at.roundBy(q)
s.to = s.to.roundBy(q)
if s.at.y != s.to.y:
if s.at.y > s.to.y:
# make sure segments always are at.y higher
swap(s.at, s.to)
segments1.add(s)
#print segments1
# Handle segments overlapping each other:
# var segments1: seq[Segment]
# while segments0.len > 0:
# var a = segments0.pop()
# var collision = false
# for b in segments0:
# if a != b:
# var at: Vec2
# if a.intersectsInner(b, at):
# print "seg2seg intersects!", a, b, at
# quit()
# if not collision:
# segments1.add(a)
# There is probably a clever way to insert-sort them.
var yScanLines: seq[float32]
@ -64,6 +55,7 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
if s.to.y notin yScanLines:
yScanLines.add s.to.y
yScanLines.sort()
print yScanLines
var segments: seq[Segment]
while segments1.len > 0:
@ -71,8 +63,9 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
var s = segments1.pop()
var collision = false
for y in yScanLines:
let scanLine = line(vec2(0, y), vec2(1, y))
var at: Vec2
if intersects(line(vec2(0, y), vec2(1, y)), s, at):
if intersects(scanLine, s, at):
at = at.roundBy(q)
at.y = y
if s.at.y != at.y and s.to.y != at.y:
@ -86,17 +79,16 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
break
if not collision:
# means its touching, not intersecting
segments.add(s)
#print segments
# sort at/to in segments
for s in segments.mitems:
if s.at.y > s.to.y:
swap(s.at, s.to)
# for s in segments.mitems:
# if s.at.y > s.to.y:
# swap(s.at, s.to)
#print segments
#print yScanLines
#let blender = blendMode.blender()
for yScanLine in yScanLines[0..^2]:
@ -107,13 +99,7 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
scanSegments.sort(proc(a, b: Segment): int =
cmp(a.at.x, b.at.x))
if scanSegments.len mod 2 != 0:
print "error???"
print yScanLine
print scanSegments
quit()
# if scanSegments.len == 0:
# if scanSegments.len mod 2 != 0:
# print "error???"
# print yScanLine
# print scanSegments
@ -121,6 +107,7 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
# TODO: winding rules will go here
var trapezoids: seq[Trapezoid]
for i in 0 ..< scanSegments.len div 2:
let
a = scanSegments[i*2+0]
@ -131,130 +118,190 @@ proc pathToTrapezoids(p: Path): seq[Trapezoid] =
#assert a.at.x < b.at.x
#assert a.to.x < b.to.x
result.add(
Trapezoid(
nw: a.at,
ne: b.at,
se: b.to, # + vec2(0,0.7),
trapezoids.add(Trapezoid(
nw: a.at,
ne: b.at,
se: b.to, # + vec2(0,0.7),
sw: a.to # + vec2(0,0.7)
)
)
))
proc trapFill(image: Image, t: Trapezoid, color: ColorRGBA) =
# assert t.nw.y == t.ne.y
# assert t.sw.y == t.se.y
var i = 0
while i < trapezoids.len:
let
height = t.sw.y - t.nw.y
minY = clamp(t.nw.y, 0, image.height.float)
maxY = clamp(t.sw.y, 0, image.height.float)
for y in minY.int ..< maxY.int:
var yRate, minX, maxX: float32
let t = trapezoids[i]
# print t
let
nw = t.nw
ne = t.ne
se = t.se
sw = t.sw
yRate = clamp((y.float - t.nw.y) / height, 0, 1)
minX = clamp(lerp(t.nw.x, t.sw.x, yRate).round, 0, image.width.float)
maxX = clamp(lerp(t.ne.x, t.se.x, yRate).round, 0, image.width.float)
let
height = sw.y - nw.y
minYf = nw.y
maxYf = sw.y
minYi = minYf.floor.int
maxYi = maxYf.floor.int
for x in minX.int ..< maxX.int:
image.setRgbaUnsafe(x, y, color)
# print t
proc drawTrapezoids(image: Image, trapezoids: seq[Trapezoid]) =
for y in minYi .. maxYi:
let
yFrac = (y.float - nw.y) / height
minXf = mix(nw.x, sw.x, yFrac)
maxXf = mix(ne.x, se.x, yFrac)
minXi = minXf.floor.int
maxXi = maxXf.floor.int
#print yFrac
# if not(minY.int == 58 or maxY.int == 58) or minX > 100:
# continue
for trapezoid in trapezoids:
image.trapFill(trapezoid, rgba(0, 0, 0, 255))
var ay: float32
if y == minYi and y == maxYi:
ay = maxYf - minYf
# print "middle", maxYf, minYf, a
#print "double", y, a, minY, maxY, round(a * 255)
elif y == minYi:
ay = (1 - (minYf - float32(minYi)))
# print "min y", minYf, minYi, a
#print "s", y, a, minY, round(a * 255)
elif y == maxYi:
ay = (maxYf - float32(maxYi))
#print "max y", maxYf, maxYi, a
# print "e", y, a, maxY, round(a * 255)
else:
ay = 1.0
# for trapezoid in trapezoids:
# var p = newPath()
# p.moveTo(trapezoid.nw)
# p.lineTo(trapezoid.ne)
# p.lineTo(trapezoid.se)
# p.lineTo(trapezoid.sw)
# p.closePath()
# image.fillPath(p, rgba(0, 0, 0, 255))
# image.strokePath(p, rgba(255, 0, 0, 255))
for x in minXi .. maxXi:
var ax: float32
# if x == minXi:
# a2 = (1 - (minXf - float32(minXi)))
# #a2 = 1.0
# elif x == maxXi:
# a2 = (maxXf - float32(maxXi))
# #a2 = 1.0
# else:
# a2 = 1.0
if x.float32 < max(nw.x, sw.x):
ax = 0.5
elif x.float32 > min(ne.x, se.x):
ax = 0.25
else:
ax = 1.0
let backdrop = mask.getValueUnsafe(x, y)
mask.setValueUnsafe(x, y, backdrop + floor(255 * ay * ax).uint8)
# if x == 100 and y == 172:
# print backdrop, round(255 * a * a2).uint8
# print mask.getValueUnsafe(x, y)
inc i
block:
# Rect
print "rect"
var image = newImage(200, 200)
image.fill(rgba(255, 255, 255, 255))
#var image = newImage(200, 200)
var p: Path
p.moveTo(50, 50)
p.lineTo(50, 150)
p.lineTo(150, 150)
p.lineTo(150, 50)
p.closePath()
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/rect.png")
block:
# Rhombus
print "rhombus"
var image = newImage(200, 200)
image.fill(rgba(255, 255, 255, 255))
var p: Path
p.moveTo(100, 50)
p.lineTo(150, 100)
p.lineTo(100, 150)
p.lineTo(50, 100)
p.closePath()
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/rhombus.png")
block:
# heart
print "heart"
var image = newImage(400, 400)
image.fill(rgba(255, 255, 255, 255))
# var p = Path()
# p.moveTo(50.25, 50.25)
# p.lineTo(50.25, 150.25)
# p.lineTo(150.25, 150.25)
# p.lineTo(150.25, 50.25)
# p.closePath()
var p = parsePath("""
M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120
Q 360 240 200 360 Q 40 240 40 120 z
M 20 60
A 40 40 90 0 1 100 60
A 40 40 90 0 1 180 60
Q 180 120 100 180
Q 20 120 20 60
z
""")
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
# image.fill(rgba(255, 255, 255, 255))
#image.fillPath2(p, color(0, 0, 0, 1))
image.writeFile("experiments/trapezoids/heart.png")
var mask = newMask(200, 200)
timeIt "rect trapezoids", 1:
#for i in 0 ..< 100:
mask.fill(0)
mask.fillPath2(p)
#image.fillPath2(p, color(0, 0, 0, 1))
mask.writeFile("experiments/trapezoids/rect_trapesoid.png")
block:
# l
print "l"
var image = newImage(500, 800)
image.fill(rgba(255, 255, 255, 255))
var mask2 = newMask(200, 200)
timeIt "rect normal", 1:
#for i in 0 ..< 100:
mask2.fill(0)
mask2.fillPath(p)
mask2.writeFile("experiments/trapezoids/rect_scanline.png")
var p = parsePath("""
M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z
""")
let (score, image) = diff(mask.newImage, mask2.newImage)
print score
image.writeFile("experiments/trapezoids/rect_diff.png")
#image.strokePath(p, rgba(0, 0, 0, 255))
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/l.png")
# block:
# # Rhombus
# print "rhombus"
# var image = newImage(200, 200)
# image.fill(rgba(255, 255, 255, 255))
block:
# g
print "g"
var image = newImage(500, 800)
image.fill(rgba(255, 255, 255, 255))
# var p = Path()
# p.moveTo(100, 50)
# p.lineTo(150, 100)
# p.lineTo(100, 150)
# p.lineTo(50, 100)
# p.closePath()
var p = parsePath("""
M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z
""")
# image.fillPath2(p, color(0, 0, 0, 1))
#image.strokePath(p, rgba(0, 0, 0, 255))
# image.writeFile("experiments/trapezoids/rhombus.png")
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
# block:
# # heart
# print "heart"
# var image = newImage(400, 400)
# image.fill(rgba(0, 0, 0, 0))
image.writeFile("experiments/trapezoids/g.png")
# var p = parsePath("""
# M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120
# Q 360 240 200 360 Q 40 240 40 120 z
# """)
# var mask = newMask(image)
# mask.fillPath2(p)
# image.draw(mask, blendMode = bmOverwrite)
# image.writeFile("experiments/trapezoids/heart.png")
# block:
# # l
# print "l"
# var image = newImage(500, 800)
# image.fill(rgba(255, 255, 255, 255))
# var p = parsePath("""
# M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z
# """)
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/l.png")
# block:
# # g
# print "g"
# var image = newImage(500, 800)
# image.fill(rgba(255, 255, 255, 255))
# var p = parsePath("""
# M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z
# """)
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/g.png")

260
experiments/trapezoid0.nim Normal file
View file

@ -0,0 +1,260 @@
import algorithm, bumpy, chroma, pixie, pixie/images, pixie/paths, print,
sequtils, vmath
printColors = false
proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t >= 0 and t <= 1:
at = a.at + (t * s1)
return true
type Trapezoid = object
nw, ne, se, sw: Vec2
proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} =
result.x = sign(v.x) * round(abs(v.x) / n) * n
result.y = sign(v.y) * round(abs(v.y) / n) * n
proc pathToTrapezoids(p: Path): seq[Trapezoid] =
var polygons = p.commandsToShapes()
const q = 1/256.0
# Creates segment q, quantize and remove verticals.
var segments1: seq[Segment]
for shape in polygons:
for s in shape.segments:
var s = s
s.at = s.at.roundBy(q)
s.to = s.to.roundBy(q)
if s.at.y != s.to.y:
segments1.add(s)
#print segments1
# Handle segments overlapping each other:
# var segments1: seq[Segment]
# while segments0.len > 0:
# var a = segments0.pop()
# var collision = false
# for b in segments0:
# if a != b:
# var at: Vec2
# if a.intersectsInner(b, at):
# print "seg2seg intersects!", a, b, at
# quit()
# if not collision:
# segments1.add(a)
# There is probably a clever way to insert-sort them.
var yScanLines: seq[float32]
for s in segments1:
if s.at.y notin yScanLines:
yScanLines.add s.at.y
if s.to.y notin yScanLines:
yScanLines.add s.to.y
yScanLines.sort()
var segments: seq[Segment]
while segments1.len > 0:
#print segments1.len, segments.len
var s = segments1.pop()
var collision = false
for y in yScanLines:
var at: Vec2
if intersects(line(vec2(0, y), vec2(1, y)), s, at):
at = at.roundBy(q)
at.y = y
if s.at.y != at.y and s.to.y != at.y:
#print "seg2yline intersects!", a, y, at
collision = true
var s1 = segment(s.at, at)
var s2 = segment(at, s.to)
#print s.length, "->", s1.length, s2.length
segments1.add(s1)
segments1.add(s2)
break
if not collision:
segments.add(s)
#print segments
# sort at/to in segments
for s in segments.mitems:
if s.at.y > s.to.y:
swap(s.at, s.to)
#print segments
#print yScanLines
for yScanLine in yScanLines[0..^2]:
var scanSegments: seq[Segment]
for s in segments:
if s.at.y == yScanLine:
scanSegments.add(s)
scanSegments.sort(proc(a, b: Segment): int =
cmp(a.at.x, b.at.x))
if scanSegments.len mod 2 != 0:
print "error???"
print yScanLine
print scanSegments
quit()
# if scanSegments.len == 0:
# print "error???"
# print yScanLine
# print scanSegments
# quit()
# TODO: winding rules will go here
for i in 0 ..< scanSegments.len div 2:
let
a = scanSegments[i*2+0]
b = scanSegments[i*2+1]
assert a.at.y == b.at.y
assert a.to.y == b.to.y
#assert a.at.x < b.at.x
#assert a.to.x < b.to.x
result.add(
Trapezoid(
nw: a.at,
ne: b.at,
se: b.to, # + vec2(0,0.7),
sw: a.to # + vec2(0,0.7)
)
)
proc trapFill(image: Image, t: Trapezoid, color: ColorRGBA) =
# assert t.nw.y == t.ne.y
# assert t.sw.y == t.se.y
let
height = t.sw.y - t.nw.y
minY = clamp(t.nw.y, 0, image.height.float)
maxY = clamp(t.sw.y, 0, image.height.float)
for y in minY.int ..< maxY.int:
var yRate, minX, maxX: float32
yRate = clamp((y.float - t.nw.y) / height, 0, 1)
minX = clamp(lerp(t.nw.x, t.sw.x, yRate).round, 0, image.width.float)
maxX = clamp(lerp(t.ne.x, t.se.x, yRate).round, 0, image.width.float)
for x in minX.int ..< maxX.int:
image.setRgbaUnsafe(x, y, color)
proc drawTrapezoids(image: Image, trapezoids: seq[Trapezoid]) =
for trapezoid in trapezoids:
image.trapFill(trapezoid, rgba(0, 0, 0, 255))
# for trapezoid in trapezoids:
# var p = newPath()
# p.moveTo(trapezoid.nw)
# p.lineTo(trapezoid.ne)
# p.lineTo(trapezoid.se)
# p.lineTo(trapezoid.sw)
# p.closePath()
# image.fillPath(p, rgba(0, 0, 0, 255))
# image.strokePath(p, rgba(255, 0, 0, 255))
block:
# Rect
print "rect"
var image = newImage(200, 200)
image.fill(rgba(255, 255, 255, 255))
var p: Path
p.moveTo(50, 50)
p.lineTo(50, 150)
p.lineTo(150, 150)
p.lineTo(150, 50)
p.closePath()
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/rect.png")
block:
# Rhombus
print "rhombus"
var image = newImage(200, 200)
image.fill(rgba(255, 255, 255, 255))
var p: Path
p.moveTo(100, 50)
p.lineTo(150, 100)
p.lineTo(100, 150)
p.lineTo(50, 100)
p.closePath()
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/rhombus.png")
block:
# heart
print "heart"
var image = newImage(400, 400)
image.fill(rgba(255, 255, 255, 255))
var p = parsePath("""
M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120
Q 360 240 200 360 Q 40 240 40 120 z
""")
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/heart.png")
block:
# l
print "l"
var image = newImage(500, 800)
image.fill(rgba(255, 255, 255, 255))
var p = parsePath("""
M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z
""")
#image.strokePath(p, rgba(0, 0, 0, 255))
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/l.png")
block:
# g
print "g"
var image = newImage(500, 800)
image.fill(rgba(255, 255, 255, 255))
var p = parsePath("""
M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z
""")
#image.strokePath(p, rgba(0, 0, 0, 255))
var trapezoids = p.pathToTrapezoids()
image.drawTrapezoids(trapezoids)
image.writeFile("experiments/trapezoids/g.png")

505
experiments/trapezoid2.nim Normal file
View file

@ -0,0 +1,505 @@
import algorithm, bumpy, chroma, pixie/images, print,
sequtils, vmath, benchy
import pixie, pixie/paths {.all.}
printColors = false
proc pixelCover(a0, b0: Vec2): float32 =
## Returns the amount of area a given segment sweeps to the right
## in a [0,0 to 1,1] box.
var
a = a0
b = b0
aI: Vec2
bI: Vec2
area: float32 = 0.0
# # Sort A on top.
# if a.y > b.y:
# let tmp = a
# a = b
# b = tmp
# if (b.y < 0 or a.y > 1) or # Above or bellow, no effect.
# (a.x >= 1 and b.x >= 1) or # To the right, no effect.
# (a.y == b.y): # Horizontal line, no effect.
# return 0
if (a.x < 0 and b.x < 0) or # Both to the left.
(a.x == b.x): # Vertical line
# Area of the rectangle:
return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0))
else:
# y = mm*x + bb
let
mm: float32 = (b.y - a.y) / (b.x - a.x)
bb: float32 = a.y - mm * a.x
if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1:
# A is in pixel bounds.
aI = a
else:
aI = vec2((0 - bb) / mm, 0)
if aI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1)
aI = vec2(0, y.clamp(0, 1))
elif aI.x > 1:
let y = mm * 1 + bb
aI = vec2(1, y.clamp(0, 1))
if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1:
# B is in pixel bounds.
bI = b
else:
bI = vec2((1 - bb) / mm, 1)
if bI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1)
bI = vec2(0, y.clamp(0, 1))
elif bI.x > 1:
let y = mm * 1 + bb
bI = vec2(1, y.clamp(0, 1))
area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y)
return area
proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t >= 0 and t <= 1:
at = a.at + (t * s1)
return true
type
Trapezoid = object
nw, ne, se, sw: Vec2
proc roundBy*(v: Vec2, n: float32): Vec2 {.inline.} =
result.x = sign(v.x) * round(abs(v.x) / n) * n
result.y = sign(v.y) * round(abs(v.y) / n) * n
proc fillPath2(mask: Mask, p: Path) =
var polygons = p.commandsToShapes()
const q = 1/256.0
# Creates segment q, quantize and remove horizontal lines.
var segments1: seq[Segment]
for shape in polygons:
for s in shape.segments:
var s = s
s.at = s.at.roundBy(q)
s.to = s.to.roundBy(q)
if s.at.y != s.to.y:
if s.at.y > s.to.y:
# make sure segments always are at.y higher
swap(s.at, s.to)
segments1.add(s)
segments1.sort(proc(a, b: Segment): int = cmp(a.at.y, b.at.y))
# Dumb way to compute cutLines
# var cutLines: seq[float32]
# for s in segments1:
# if s.at.y notin cutLines:
# cutLines.add s.at.y
# if s.to.y notin cutLines:
# cutLines.add s.to.y
# cutLines.sort()
# Compute cutLines
var
cutLines: seq[float32]
last = segments1[0].at.y
bottom = segments1[0].to.y
cutLines.add(last)
for s in segments1:
if s.at.y != last:
last = s.at.y
cutLines.add(last)
if bottom < s.to.y:
bottom = s.to.y
cutLines.add(bottom)
#print cutLines
var
sweeps = newSeq[seq[Segment]](cutLines.len - 1) # dont add bottom cutLine
lastSeg = 0
for i, sweep in sweeps.mpairs:
#print "sweep", i, cutLines[i]
while segments1[lastSeg].at.y == cutLines[i]:
let s = segments1[lastSeg]
#print s
if s.to.y != cutLines[i + 1]:
#print "needs cut?"
quit()
sweep.add(segments1[lastSeg])
inc lastSeg
if lastSeg >= segments1.len:
# Sort the last sweep by X
break
# Sort the sweep by X
sweep.sort(proc(a, b: Segment): int = cmp(a.at.x, b.at.x))
proc fillCoverage(y: int, currCutLine: int, sweep: seq[Segment]) =
# var i = 0
# let
# sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
# yFracTop = (y.float - cutLines[currCutLine]) / sweepHeight
# yFracBottom = (y.float + 1 - cutLines[currCutLine]) / sweepHeight
# #print "cover", y, sweepHeight, yFrac
# while i < sweep.len:
# #print "fill", sweep[i].at.x, "..", sweep[i+1].at.x
# let
# minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFracTop)
# maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFracTop)
# minXf2 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFracBottom)
# maxXf2 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFracBottom)
# minXi1 = minXf1.floor.int
# maxXi1 = maxXf1.floor.int
# minXi2 = minXf2.floor.int
# maxXi2 = maxXf2.floor.int
# for x in min(minXi1, minXi2) .. max(maxXi1, maxXi2):
# var a = 1.0f
# # if x < max(minXi1, minXi2):
# # a = 0.1
# # elif x > min(maxXi1, maxXi2):
# # a = 0.1
# # else:
# # a = 0.5
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + (a * 255).uint8)
# i += 2
# x10 slower
# for x in 0 ..< mask.width:
# for i, seg in sweep:
# var area = pixelCover(seg.at - vec2(x.float32, y.float32), seg.to - vec2(x.float32, y.float32))
# if i mod 2 == 1:
# area = -area
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + (area * 255).uint8)
let quality = 5
for m in 0 ..< quality:
let
sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
yFrac = (y.float32 + (m.float32 / quality.float32) - cutLines[currCutLine]) / sweepHeight
if yFrac < 0.0 or yFrac >= 1.0:
continue
var i = 0
while i < sweep.len:
let
minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFrac)
maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFrac)
minXi1 = minXf1.int
maxXi1 = maxXf1.int
for x in minXi1 ..< maxXi1:
let backdrop = mask.getValueUnsafe(x, y)
mask.setValueUnsafe(x, y, backdrop + (255 div quality).uint8)
# if x == 100 and y == 165:
# print backdrop, 255 div quality
# print mask.getValueUnsafe(x, y)
i += 2
# let
# sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
# yFrac = (y.float32 - cutLines[currCutLine]) / sweepHeight
# var i = 0
# while i < sweep.len:
# let
# minXf1 = mix(sweep[i+0].at.x, sweep[i+0].to.x, yFrac)
# maxXf1 = mix(sweep[i+1].at.x, sweep[i+1].to.x, yFrac)
# minXi1 = minXf1.floor.int
# maxXi1 = maxXf1.floor.int
# for x in minXi1 .. maxXi1:
# mask.setValueUnsafe(x, y, 255)
# i += 2
var
currCutLine = 0
for scanLine in cutLines[0].int ..< cutLines[^1].ceil.int:
print scanLine, "..<", scanLine + 1
print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1]
fillCoverage(scanLine, currCutLine, sweeps[currCutLine])
while cutLines[currCutLine + 1] < scanLine.float + 1.0:
inc currCutLine
print " ", currCutLine, cutLines[currCutLine], "..<", cutLines[currCutLine + 1]
fillCoverage(scanLine, currCutLine, sweeps[currCutLine])
# print sweeps[^1]
# print cutLines
# var segments: seq[Segment]
# while segments1.len > 0:
# #print segments1.len, segments.len
# var s = segments1.pop()
# var collision = false
# for y in cutLines:
# let scanLine = line(vec2(0, y), vec2(1, y))
# var at: Vec2
# if intersects(scanLine, s, at):
# at = at.roundBy(q)
# at.y = y
# if s.at.y != at.y and s.to.y != at.y:
# #print "seg2yline intersects!", a, y, at
# collision = true
# var s1 = segment(s.at, at)
# var s2 = segment(at, s.to)
# #print s.length, "->", s1.length, s2.length
# segments1.add(s1)
# segments1.add(s2)
# break
# if not collision:
# # means its touching, not intersecting
# segments.add(s)
# # sort at/to in segments
# # for s in segments.mitems:
# # if s.at.y > s.to.y:
# # swap(s.at, s.to)
# #let blender = blendMode.blender()
# for yScanLine in cutLines[0..^2]:
# var scanSegments: seq[Segment]
# for s in segments:
# if s.at.y == yScanLine:
# scanSegments.add(s)
# scanSegments.sort(proc(a, b: Segment): int =
# cmp(a.at.x, b.at.x))
# # if scanSegments.len mod 2 != 0:
# # print "error???"
# # print yScanLine
# # print scanSegments
# # quit()
# # TODO: winding rules will go here
# var trapezoids: seq[Trapezoid]
# for i in 0 ..< scanSegments.len div 2:
# let
# a = scanSegments[i*2+0]
# b = scanSegments[i*2+1]
# assert a.at.y == b.at.y
# assert a.to.y == b.to.y
# #assert a.at.x < b.at.x
# #assert a.to.x < b.to.x
# trapezoids.add(Trapezoid(
# nw: a.at,
# ne: b.at,
# se: b.to, # + vec2(0,0.7),
# sw: a.to # + vec2(0,0.7)
# ))
# var i = 0
# while i < trapezoids.len:
# let t = trapezoids[i]
# # print t
# let
# nw = t.nw
# ne = t.ne
# se = t.se
# sw = t.sw
# let
# height = sw.y - nw.y
# minYf = nw.y
# maxYf = sw.y
# minYi = minYf.floor.int
# maxYi = maxYf.floor.int
# # print t
# for y in minYi .. maxYi:
# let
# yFrac = (y.float - nw.y) / height
# minXf = mix(nw.x, sw.x, yFrac)
# maxXf = mix(ne.x, se.x, yFrac)
# minXi = minXf.floor.int
# maxXi = maxXf.floor.int
# #print yFrac
# # if not(minY.int == 58 or maxY.int == 58) or minX > 100:
# # continue
# var ay: float32
# if y == minYi and y == maxYi:
# ay = maxYf - minYf
# # print "middle", maxYf, minYf, a
# #print "double", y, a, minY, maxY, round(a * 255)
# elif y == minYi:
# ay = (1 - (minYf - float32(minYi)))
# # print "min y", minYf, minYi, a
# #print "s", y, a, minY, round(a * 255)
# elif y == maxYi:
# ay = (maxYf - float32(maxYi))
# #print "max y", maxYf, maxYi, a
# # print "e", y, a, maxY, round(a * 255)
# else:
# ay = 1.0
# for x in minXi .. maxXi:
# var ax: float32
# # if x == minXi:
# # a2 = (1 - (minXf - float32(minXi)))
# # #a2 = 1.0
# # elif x == maxXi:
# # a2 = (maxXf - float32(maxXi))
# # #a2 = 1.0
# # else:
# # a2 = 1.0
# if x.float32 < max(nw.x, sw.x):
# ax = 0.5
# elif x.float32 > min(ne.x, se.x):
# ax = 0.25
# else:
# ax = 1.0
# let backdrop = mask.getValueUnsafe(x, y)
# mask.setValueUnsafe(x, y, backdrop + floor(255 * ay * ax).uint8)
# # if x == 100 and y == 172:
# # print backdrop, round(255 * a * a2).uint8
# # print mask.getValueUnsafe(x, y)
# inc i
block:
# Rect
print "rect"
#var image = newImage(200, 200)
# var p = Path()
# p.moveTo(50.25, 50.25)
# p.lineTo(50.25, 150.25)
# p.lineTo(150.25, 150.25)
# p.lineTo(150.25, 50.25)
# p.closePath()
var p = parsePath("""
M 20 60
A 40 40 90 0 1 100 60
A 40 40 90 0 1 180 60
Q 180 120 100 180
Q 20 120 20 60
z
""")
# image.fill(rgba(255, 255, 255, 255))
#image.fillPath2(p, color(0, 0, 0, 1))
var mask = newMask(200, 200)
timeIt "rect trapezoids", 1:
#for i in 0 ..< 100:
mask.fill(0)
mask.fillPath2(p)
#image.fillPath2(p, color(0, 0, 0, 1))
mask.writeFile("experiments/trapezoids/rect_trapesoid.png")
var mask2 = newMask(200, 200)
timeIt "rect normal", 1:
#for i in 0 ..< 100:
mask2.fill(0)
mask2.fillPath(p)
mask2.writeFile("experiments/trapezoids/rect_scanline.png")
let (score, image) = diff(mask.newImage, mask2.newImage)
print score
image.writeFile("experiments/trapezoids/rect_diff.png")
# block:
# # Rhombus
# print "rhombus"
# var image = newImage(200, 200)
# image.fill(rgba(255, 255, 255, 255))
# var p = Path()
# p.moveTo(100, 50)
# p.lineTo(150, 100)
# p.lineTo(100, 150)
# p.lineTo(50, 100)
# p.closePath()
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/rhombus.png")
# block:
# # heart
# print "heart"
# var image = newImage(400, 400)
# image.fill(rgba(0, 0, 0, 0))
# var p = parsePath("""
# M 40 120 A 80 80 90 0 1 200 120 A 80 80 90 0 1 360 120
# Q 360 240 200 360 Q 40 240 40 120 z
# """)
# var mask = newMask(image)
# mask.fillPath2(p)
# image.draw(mask, blendMode = bmOverwrite)
# image.writeFile("experiments/trapezoids/heart.png")
# block:
# # l
# print "l"
# var image = newImage(500, 800)
# image.fill(rgba(255, 255, 255, 255))
# var p = parsePath("""
# M 236 20 Q 150 22 114 57 T 78 166 V 790 L 171 806 V 181 Q 171 158 175 143 T 188 119 T 212 105.5 T 249 98 Z
# """)
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/l.png")
# block:
# # g
# print "g"
# var image = newImage(500, 800)
# image.fill(rgba(255, 255, 255, 255))
# var p = parsePath("""
# M 406 538 Q 394 546 359.5 558.5 T 279 571 Q 232 571 190.5 556 T 118 509.5 T 69 431 T 51 319 Q 51 262 68 214.5 T 117.5 132.5 T 197 78.5 T 303 59 Q 368 59 416.5 68.5 T 498 86 V 550 Q 498 670 436 724 T 248 778 Q 199 778 155.5 770 T 80 751 L 97 670 Q 125 681 165.5 689.5 T 250 698 Q 333 698 369.5 665 T 406 560 V 538 Z M 405 152 Q 391 148 367.5 144.5 T 304 141 Q 229 141 188.5 190 T 148 320 Q 148 365 159.5 397 T 190.5 450 T 235.5 481 T 288 491 Q 325 491 356 480.5 T 405 456 V 152 Z
# """)
# image.fillPath2(p, color(0, 0, 0, 1))
# image.writeFile("experiments/trapezoids/g.png")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.6 KiB

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 921 B

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 1.2 KiB