Merge pull request #488 from treeform/guzba

avx2 line coverage blends, neon line blends
This commit is contained in:
Andre von Houck 2022-08-01 18:55:24 -07:00 committed by GitHub
commit 3fbd1da002
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 520 additions and 93 deletions

View file

@ -129,16 +129,25 @@ proc unfilter(
uncompressedStartIdx = uncompressedIdx(1, y)
unfilteredStartIx = unfiteredIdx(0, y)
var x: int
when allowSimd and defined(amd64):
when allowSimd and (defined(amd64) or defined(arm64)):
if y - 1 >= 0:
for _ in 0 ..< rowBytes div 16:
let
bytes = mm_loadu_si128(uncompressed[uncompressedStartIdx + x].addr)
up = mm_loadu_si128(result[unfilteredStartIx + x - rowBytes].addr)
mm_storeu_si128(
result[unfilteredStartIx + x].addr,
mm_add_epi8(bytes, up)
)
when defined(amd64):
let
bytes = mm_loadu_si128(uncompressed[uncompressedStartIdx + x].addr)
up = mm_loadu_si128(result[unfilteredStartIx + x - rowBytes].addr)
mm_storeu_si128(
result[unfilteredStartIx + x].addr,
mm_add_epi8(bytes, up)
)
else: # arm64
let
bytes = vld1q_u8(uncompressed[uncompressedStartIdx + x].addr)
up = vld1q_u8(result[unfilteredStartIx + x - rowBytes].addr)
vst1q_u8(
result[unfilteredStartIx + x].addr,
vaddq_u8(bytes, up)
)
x += 16
for x in x ..< rowBytes:
var value = uncompressed[uncompressedStartIdx + x]

View file

@ -338,8 +338,9 @@ proc blur*(
var values: array[4, uint32]
for xx in x - radius ..< min(x + radius, 0):
values += outOfBounds * kernel[xx - x + radius]
var idx = image.dataIndex(0, y)
for xx in max(x - radius, 0) .. min(x + radius, image.width - 1):
values += image.unsafe[xx, y] * kernel[xx - x + radius]
values += image.data[idx + xx] * kernel[xx - x + radius]
for xx in max(x - radius, image.width) .. x + radius:
values += outOfBounds * kernel[xx - x + radius]
blurX.unsafe[y, x] = rgbx(values)
@ -350,8 +351,9 @@ proc blur*(
var values: array[4, uint32]
for yy in y - radius ..< min(y + radius, 0):
values += outOfBounds * kernel[yy - y + radius]
var idx = blurX.dataIndex(0, x)
for yy in max(y - radius, 0) .. min(y + radius, image.height - 1):
values += blurX.unsafe[yy, x] * kernel[yy - y + radius]
values += blurX.data[idx + yy] * kernel[yy - y + radius]
for yy in max(y - radius, image.height) .. y + radius:
values += outOfBounds * kernel[yy - y + radius]
image.unsafe[x, y] = rgbx(values)
@ -447,7 +449,9 @@ proc blendLineOverwrite(
) {.inline.} =
copyMem(a[0].addr, b[0].addr, len * 4)
proc blendLineNormal(a, b: ptr UncheckedArray[ColorRGBX], len: int) {.hasSimd.} =
proc blendLineNormal(
a, b: ptr UncheckedArray[ColorRGBX], len: int
) {.hasSimd.} =
for i in 0 ..< len:
a[i] = blendNormal(a[i], b[i])

View file

@ -119,7 +119,7 @@ proc fillGradientLinear(image: Image, paint: Paint) =
if at.y == to.y: # Horizontal gradient
var x: int
while x < image.width:
when defined(amd64) and allowSimd:
when allowSimd and (defined(amd64) or defined(arm64)):
if x + 4 <= image.width:
var colors: array[4, ColorRGBX]
for i in 0 ..< 4:
@ -128,10 +128,14 @@ proc fillGradientLinear(image: Image, paint: Paint) =
t = toLineSpace(at, to, xy)
rgbx = paint.gradientColor(t)
colors[i] = rgbx
let colorVec = cast[M128i](colors)
for y in 0 ..< image.height:
mm_storeu_si128(image.data[image.dataIndex(x, y)].addr, colorVec)
when defined(amd64):
let colorVec = mm_loadu_si128(colors[0].addr)
for y in 0 ..< image.height:
mm_storeu_si128(image.data[image.dataIndex(x, y)].addr, colorVec)
else: # arm64
let colorVec = vld1q_u32(colors[0].addr)
for y in 0 ..< image.height:
vst1q_u32(image.data[image.dataIndex(x, y)].addr, colorVec)
x += 4
continue
@ -150,11 +154,17 @@ proc fillGradientLinear(image: Image, paint: Paint) =
t = toLineSpace(at, to, xy)
rgbx = paint.gradientColor(t)
var x: int
when defined(amd64) and allowSimd:
let colorVec = mm_set1_epi32(cast[int32](rgbx))
for _ in 0 ..< image.width div 4:
mm_storeu_si128(image.data[image.dataIndex(x, y)].addr, colorVec)
x += 4
when allowSimd:
when defined(amd64):
let colorVec = mm_set1_epi32(cast[int32](rgbx))
for _ in 0 ..< image.width div 4:
mm_storeu_si128(image.data[image.dataIndex(x, y)].addr, colorVec)
x += 4
elif defined(arm64):
let colorVec = vmovq_n_u32(cast[uint32](rgbx))
for _ in 0 ..< image.width div 4:
vst1q_u32(image.data[image.dataIndex(x, y)].addr, colorVec)
x += 4
for x in x ..< image.width:
image.unsafe[x, y] = rgbx
@ -227,7 +237,6 @@ proc fillGradientAngular(image: Image, paint: Paint) =
proc fillGradient*(image: Image, paint: Paint) {.raises: [PixieError].} =
## Fills with the Paint gradient.
case paint.kind:
of LinearGradientPaint:
image.fillGradientLinear(paint)

View file

@ -1410,13 +1410,21 @@ proc computeCoverage(
let fillLen = at.integer - fillStart
if fillLen > 0:
var i = fillStart
when defined(amd64) and allowSimd:
let sampleCoverageVec = mm_set1_epi8(sampleCoverage)
for _ in 0 ..< fillLen div 16:
var coverageVec = mm_loadu_si128(coverages[i - startX].addr)
coverageVec = mm_add_epi8(coverageVec, sampleCoverageVec)
mm_storeu_si128(coverages[i - startX].addr, coverageVec)
i += 16
when allowSimd:
when defined(amd64):
let sampleCoverageVec = mm_set1_epi8(sampleCoverage)
for _ in 0 ..< fillLen div 16:
var coverageVec = mm_loadu_si128(coverages[i - startX].addr)
coverageVec = mm_add_epi8(coverageVec, sampleCoverageVec)
mm_storeu_si128(coverages[i - startX].addr, coverageVec)
i += 16
elif defined(arm64):
let sampleCoverageVec = vmovq_n_u8(sampleCoverage)
for _ in 0 ..< fillLen div 16:
var coverageVec = vld1q_u8(coverages[i - startX].addr)
coverageVec = vaddq_u8(coverageVec, sampleCoverageVec)
vst1q_u8(coverages[i - startX].addr, coverageVec)
i += 16
for j in i ..< fillStart + fillLen:
coverages[j - startX] += sampleCoverage

View file

@ -415,6 +415,76 @@ proc minifyBy2Avx2*(image: Image, power = 1): Image {.simd.} =
# Set src as this result for if we do another power
src = result
template applyCoverage*(rgbxVec: M256i, coverage: M128i): M256i =
## Unpack the first 8 coverage bytes.
let
unpacked0 = mm_shuffle_epi8(coverage, coverageShuffle)
unpacked1 = mm_shuffle_epi8(mm_srli_si128(coverage, 4), coverageShuffle)
unpacked =
mm256_insertf128_si256(mm256_castsi128_si256(unpacked0), unpacked1, 1)
var
rgbxEven = mm256_slli_epi16(rgbxVec, 8)
rgbxOdd = mm256_and_si256(rgbxVec, oddMask)
rgbxEven = mm256_mulhi_epu16(rgbxEven, unpacked)
rgbxOdd = mm256_mulhi_epu16(rgbxOdd, unpacked)
rgbxEven = mm256_srli_epi16(mm256_mulhi_epu16(rgbxEven, div255), 7)
rgbxOdd = mm256_srli_epi16(mm256_mulhi_epu16(rgbxOdd, div255), 7)
mm256_or_si256(rgbxEven, mm256_slli_epi16(rgbxOdd, 8))
proc blendLineCoverageOverwriteAvx2*(
line: ptr UncheckedArray[ColorRGBX],
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 31) != 0:
let coverage = coverages[i]
if coverage != 0:
line[i] = rgbx * coverage
inc i
let
rgbxVec = mm256_set1_epi32(cast[uint32](rgbx))
vecZero = mm256_setzero_si256()
vec255 = mm256_set1_epi8(255)
oddMask = mm256_set1_epi16(0xff00)
div255 = mm256_set1_epi16(0x8081)
coverageShuffle = mm_set_epi8(
3, -1, 3, -1, 2, -1, 2, -1, 1, -1, 1, -1, 0, -1, 0, -1
)
while i < len - 32:
let
coverage = mm256_loadu_si256(coverages[i].addr)
eqZero = mm256_cmpeq_epi8(coverage, vecZero)
eq255 = mm256_cmpeq_epi8(coverage, vec255)
if mm256_movemask_epi8(eqZero) == cast[int32](0xffffffff):
i += 32
elif mm256_movemask_epi8(eq255) == cast[int32](0xffffffff):
for _ in 0 ..< 4:
mm256_store_si256(line[i].addr, rgbxVec)
i += 8
else:
let
coverageLo = mm256_castsi256_si128(coverage)
coverageHi = mm256_extractf128_si256(coverage, 1)
coverages = [
coverageLo,
mm_srli_si128(coverageLo, 8),
coverageHi,
mm_srli_si128(coverageHi, 8),
]
for j in 0 ..< 4:
mm256_store_si256(line[i].addr, rgbxVec.applyCoverage(coverages[j]))
i += 8
for i in i ..< len:
let coverage = coverages[i]
if coverage != 0:
line[i] = rgbx * coverage
proc blendLineNormalAvx2*(
line: ptr UncheckedArray[ColorRGBX], rgbx: ColorRGBX, len: int
) {.simd.} =
@ -473,6 +543,71 @@ proc blendLineNormalAvx2*(
for i in i ..< len:
a[i] = blendNormal(a[i], b[i])
proc blendLineCoverageNormalAvx2*(
line: ptr UncheckedArray[ColorRGBX],
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 31) != 0:
let coverage = coverages[i]
if coverage == 0:
discard
else:
line[i] = blendNormal(line[i], rgbx * coverage)
inc i
let
rgbxVec = mm256_set1_epi32(cast[uint32](rgbx))
vecZero = mm256_setzero_si256()
vec255 = mm256_set1_epi8(255)
alphaMask = mm256_set1_epi32(cast[int32](0xff000000))
oddMask = mm256_set1_epi16(cast[int16](0xff00))
div255 = mm256_set1_epi16(cast[int16](0x8081))
vecAlpha255 = mm256_set1_epi32(cast[int32]([0.uint8, 255, 0, 255]))
coverageShuffle = mm_set_epi8(
3, -1, 3, -1, 2, -1, 2, -1, 1, -1, 1, -1, 0, -1, 0, -1
)
shuffleControl = mm256_set_epi8(
15, -1, 15, -1, 11, -1, 11, -1, 7, -1, 7, -1, 3, -1, 3, -1,
15, -1, 15, -1, 11, -1, 11, -1, 7, -1, 7, -1, 3, -1, 3, -1
)
while i < len - 32:
let
coverage = mm256_loadu_si256(coverages[i].addr)
eqZero = mm256_cmpeq_epi8(coverage, vecZero)
eq255 = mm256_cmpeq_epi8(coverage, vec255)
if mm256_movemask_epi8(eqZero) == cast[int32](0xffffffff):
i += 32
elif mm256_movemask_epi8(eq255) == cast[int32](0xffffffff) and rgbx.a == 255:
for _ in 0 ..< 4:
mm256_store_si256(line[i].addr, rgbxVec)
i += 8
else:
let
coverageLo = mm256_castsi256_si128(coverage)
coverageHi = mm256_extractf128_si256(coverage, 1)
coverages = [
coverageLo,
mm_srli_si128(coverageLo, 8),
coverageHi,
mm_srli_si128(coverageHi, 8),
]
for j in 0 ..< 4:
let
backdrop = mm256_loadu_si256(line[i].addr)
source = rgbxVec.applyCoverage(coverages[j])
mm256_store_si256(line[i].addr, blendNormalSimd(backdrop, source))
i += 8
for i in i ..< len:
let coverage = coverages[i]
if coverage == 0:
discard
else:
line[i] = blendNormal(line[i], rgbx * coverage)
proc blendLineMaskAvx2*(
line: ptr UncheckedArray[ColorRGBX], rgbx: ColorRGBX, len: int
) {.simd.} =
@ -529,5 +664,73 @@ proc blendLineMaskAvx2*(
for i in i ..< len:
a[i] = blendMask(a[i], b[i])
proc blendLineCoverageMaskAvx2*(
line: ptr UncheckedArray[ColorRGBX],
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 31) != 0:
let coverage = coverages[i]
if coverage == 0:
line[i] = rgbx(0, 0, 0, 0)
elif coverage == 255:
discard
else:
line[i] = blendMask(line[i], rgbx * coverage)
inc i
let
rgbxVec = mm256_set1_epi32(cast[uint32](rgbx))
vecZero = mm256_setzero_si256()
vec255 = mm256_set1_epi8(255)
alphaMask = mm256_set1_epi32(cast[int32](0xff000000))
oddMask = mm256_set1_epi16(cast[int16](0xff00))
div255 = mm256_set1_epi16(cast[int16](0x8081))
coverageShuffle = mm_set_epi8(
3, -1, 3, -1, 2, -1, 2, -1, 1, -1, 1, -1, 0, -1, 0, -1
)
shuffleControl = mm256_set_epi8(
15, -1, 15, -1, 11, -1, 11, -1, 7, -1, 7, -1, 3, -1, 3, -1,
15, -1, 15, -1, 11, -1, 11, -1, 7, -1, 7, -1, 3, -1, 3, -1
)
while i < len - 16:
let
coverage = mm256_loadu_si256(coverages[i].addr)
eqZero = mm256_cmpeq_epi8(coverage, vecZero)
eq255 = mm256_cmpeq_epi8(coverage, vec255)
if mm256_movemask_epi8(eqZero) == cast[int32](0xffffffff):
for _ in 0 ..< 4:
mm256_store_si256(line[i].addr, vecZero)
i += 8
elif mm256_movemask_epi8(eq255) == cast[int32](0xffffffff) and rgbx.a == 255:
i += 32
else:
let
coverageLo = mm256_castsi256_si128(coverage)
coverageHi = mm256_extractf128_si256(coverage, 1)
coverages = [
coverageLo,
mm_srli_si128(coverageLo, 8),
coverageHi,
mm_srli_si128(coverageHi, 8),
]
for j in 0 ..< 4:
let
backdrop = mm256_loadu_si256(line[i].addr)
source = rgbxVec.applyCoverage(coverages[j])
mm256_store_si256(line[i].addr, blendMaskSimd(backdrop, source))
i += 8
for i in i ..< len:
let coverage = coverages[i]
if coverage == 0:
line[i] = rgbx(0, 0, 0, 0)
elif coverage == 255:
discard
else:
line[i] = blendMask(line[i], rgbx * coverage)
when defined(release):
{.pop.}

View file

@ -3,6 +3,30 @@ import chroma, internal, nimsimd/neon, pixie/blends, pixie/common, vmath
when defined(release):
{.push checks: off.}
template multiplyDiv255*(c, a: uint8x8): uint8x8 =
let ca = vmull_u8(c, a)
vraddhn_u16(ca, vrshrq_n_u16(ca, 8))
template multiplyDiv255*(c, a: uint8x16): uint8x16 =
vcombine_u8(
multiplyDiv255(vget_low_u8(c), vget_low_u8(a)),
multiplyDiv255(vget_high_u8(c), vget_high_u8(a))
)
template blendNormalSimd*(backdrop, source: uint8x16x4): uint8x16x4 =
let multiplier = vsubq_u8(vec255, source.val[3])
var blended: uint8x16x4
blended.val[0] = multiplyDiv255(backdrop.val[0], multiplier)
blended.val[1] = multiplyDiv255(backdrop.val[1], multiplier)
blended.val[2] = multiplyDiv255(backdrop.val[2], multiplier)
blended.val[3] = multiplyDiv255(backdrop.val[3], multiplier)
blended.val[0] = vaddq_u8(blended.val[0], source.val[0])
blended.val[1] = vaddq_u8(blended.val[1], source.val[1])
blended.val[2] = vaddq_u8(blended.val[2], source.val[2])
blended.val[3] = vaddq_u8(blended.val[3], source.val[3])
blended
proc fillUnsafeNeon*(
data: var seq[ColorRGBX],
color: SomeColor,
@ -146,22 +170,12 @@ proc toPremultipliedAlphaNeon*(data: var seq[ColorRGBA | ColorRGBX]) {.simd.} =
inc i
p += 4
template multiply(c, a: uint8x8): uint8x8 =
let ca = vmull_u8(c, a)
vraddhn_u16(ca, vrshrq_n_u16(ca, 8))
template multiply(c, a: uint8x16): uint8x16 =
vcombine_u8(
multiply(vget_low_u8(c), vget_low_u8(a)),
multiply(vget_high_u8(c), vget_high_u8(a))
)
let iterations = (data.len - i) div 16
for _ in 0 ..< iterations:
var channels = vld4q_u8(cast[pointer](p))
channels.val[0] = multiply(channels.val[0], channels.val[3])
channels.val[1] = multiply(channels.val[1], channels.val[3])
channels.val[2] = multiply(channels.val[2], channels.val[3])
channels.val[0] = multiplyDiv255(channels.val[0], channels.val[3])
channels.val[1] = multiplyDiv255(channels.val[1], channels.val[3])
channels.val[2] = multiplyDiv255(channels.val[2], channels.val[3])
vst4q_u8(cast[pointer](p), channels)
p += 64
i += 16 * iterations
@ -225,19 +239,15 @@ proc applyOpacityNeon*(image: Image, opacity: float32) {.simd.} =
i: int
p = cast[uint](image.data[0].addr)
template multiply(c, a: uint8x8): uint8x8 =
let ca = vmull_u8(c, a)
vraddhn_u16(ca, vrshrq_n_u16(ca, 8))
let
opacityVec = vmov_n_u8(opacity)
iterations = image.data.len div 8
for _ in 0 ..< iterations:
var channels = vld4_u8(cast[pointer](p))
channels.val[0] = multiply(channels.val[0], opacityVec)
channels.val[1] = multiply(channels.val[1], opacityVec)
channels.val[2] = multiply(channels.val[2], opacityVec)
channels.val[3] = multiply(channels.val[3], opacityVec)
channels.val[0] = multiplyDiv255(channels.val[0], opacityVec)
channels.val[1] = multiplyDiv255(channels.val[1], opacityVec)
channels.val[2] = multiplyDiv255(channels.val[2], opacityVec)
channels.val[3] = multiplyDiv255(channels.val[3], opacityVec)
vst4_u8(cast[pointer](p), channels)
p += 32
i += 8 * iterations
@ -414,11 +424,86 @@ proc magnifyBy2Neon*(image: Image, power = 1): Image {.simd.} =
result.width * 4
)
proc blendLineCoverageOverwriteNeon*(
line: ptr UncheckedArray[ColorRGBX],
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
let coverage = coverages[i]
if coverage != 0:
line[i] = rgbx * coverage
inc i
var vecRgbx: uint8x16x4
vecRgbx.val[0] = vmovq_n_u8(rgbx.r)
vecRgbx.val[1] = vmovq_n_u8(rgbx.g)
vecRgbx.val[2] = vmovq_n_u8(rgbx.b)
vecRgbx.val[3] = vmovq_n_u8(rgbx.a)
let
vecZero = vmovq_n_u8(0)
vec255 = vmovq_n_u8(255)
while i < len - 16:
let
coverage = vld1q_u8(coverages[i].addr)
eqZero = vceqq_u8(coverage, vecZero)
eq255 = vceqq_u8(coverage, vec255)
maskZero = vget_lane_u64(cast[uint64x1](
vand_u8(vget_low_u8(eqZero), vget_high_u8(eqZero)
)), 0)
mask255 = vget_lane_u64(cast[uint64x1](
vand_u8(vget_low_u8(eq255), vget_high_u8(eq255)
)), 0)
if maskZero == uint64.high:
discard
elif mask255 == uint64.high:
vst4q_u8(line[i].addr, vecRgbx)
else:
var source: uint8x16x4
source.val[0] = multiplyDiv255(vecRgbx.val[0], coverage)
source.val[1] = multiplyDiv255(vecRgbx.val[1], coverage)
source.val[2] = multiplyDiv255(vecRgbx.val[2], coverage)
source.val[3] = multiplyDiv255(vecRgbx.val[3], coverage)
vst4q_u8(line[i].addr, source)
i += 16
for i in i ..< len:
let coverage = coverages[i]
if coverage != 0:
line[i] = rgbx * coverage
proc blendLineNormalNeon*(
line: ptr UncheckedArray[ColorRGBX], rgbx: ColorRGBX, len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
line[i] = blendNormal(line[i], rgbx)
inc i
var vecRgbx: uint8x16x4
vecRgbx.val[0] = vmovq_n_u8(rgbx.r)
vecRgbx.val[1] = vmovq_n_u8(rgbx.g)
vecRgbx.val[2] = vmovq_n_u8(rgbx.b)
vecRgbx.val[3] = vmovq_n_u8(rgbx.a)
let vec255 = vmovq_n_u8(255)
while i < len - 16:
let backdrop = vld4q_u8(line[i].addr)
vst4q_u8(line[i].addr, blendNormalSimd(backdrop, vecRgbx))
i += 16
for i in i ..< len:
line[i] = blendNormal(line[i], rgbx)
proc blendLineNormalNeon*(
a, b: ptr UncheckedArray[ColorRGBX], len: int
) {.simd.} =
var i: int
while (cast[uint](a[i].addr) and 15) != 0:
while i < len and (cast[uint](a[i].addr) and 15) != 0:
a[i] = blendNormal(a[i], b[i])
inc i
@ -433,41 +518,99 @@ proc blendLineNormalNeon*(
if mask == uint64.high:
vst4q_u8(a[i].addr, source)
else:
template multiply(c, a: uint8x8): uint8x8 =
let ca = vmull_u8(c, a)
vraddhn_u16(ca, vrshrq_n_u16(ca, 8))
template multiply(c, a: uint8x16): uint8x16 =
vcombine_u8(
multiply(vget_low_u8(c), vget_low_u8(a)),
multiply(vget_high_u8(c), vget_high_u8(a))
)
let
backdrop = vld4q_u8(a[i].addr)
multiplier = vsubq_u8(vec255, source.val[3])
var blended: uint8x16x4
blended.val[0] = multiply(backdrop.val[0], multiplier)
blended.val[1] = multiply(backdrop.val[1], multiplier)
blended.val[2] = multiply(backdrop.val[2], multiplier)
blended.val[3] = multiply(backdrop.val[3], multiplier)
blended.val[0] = vaddq_u8(blended.val[0], source.val[0])
blended.val[1] = vaddq_u8(blended.val[1], source.val[1])
blended.val[2] = vaddq_u8(blended.val[2], source.val[2])
blended.val[3] = vaddq_u8(blended.val[3], source.val[3])
vst4q_u8(a[i].addr, blended)
let backdrop = vld4q_u8(a[i].addr)
vst4q_u8(a[i].addr, blendNormalSimd(backdrop, source))
i += 16
for i in i ..< len:
a[i] = blendNormal(a[i], b[i])
proc blendLineCoverageNormalNeon*(
line: ptr UncheckedArray[ColorRGBX],
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
let coverage = coverages[i]
if coverage == 0:
discard
else:
line[i] = blendNormal(line[i], rgbx * coverage)
inc i
var vecRgbx: uint8x16x4
vecRgbx.val[0] = vmovq_n_u8(rgbx.r)
vecRgbx.val[1] = vmovq_n_u8(rgbx.g)
vecRgbx.val[2] = vmovq_n_u8(rgbx.b)
vecRgbx.val[3] = vmovq_n_u8(rgbx.a)
let
vecZero = vmovq_n_u8(0)
vec255 = vmovq_n_u8(255)
while i < len - 16:
let
coverage = vld1q_u8(coverages[i].addr)
eqZero = vceqq_u8(coverage, vecZero)
eq255 = vceqq_u8(coverage, vec255)
maskZero = vget_lane_u64(cast[uint64x1](
vand_u8(vget_low_u8(eqZero), vget_high_u8(eqZero)
)), 0)
mask255 = vget_lane_u64(cast[uint64x1](
vand_u8(vget_low_u8(eq255), vget_high_u8(eq255)
)), 0)
if maskZero == uint64.high:
discard
elif mask255 == uint64.high and rgbx.a == 255:
vst4q_u8(line[i].addr, vecRgbx)
else:
var source: uint8x16x4
source.val[0] = multiplyDiv255(vecRgbx.val[0], coverage)
source.val[1] = multiplyDiv255(vecRgbx.val[1], coverage)
source.val[2] = multiplyDiv255(vecRgbx.val[2], coverage)
source.val[3] = multiplyDiv255(vecRgbx.val[3], coverage)
let backdrop = vld4q_u8(line[i].addr)
vst4q_u8(line[i].addr, blendNormalSimd(backdrop, source))
i += 16
for i in i ..< len:
let coverage = coverages[i]
if coverage == 0:
discard
else:
line[i] = blendNormal(line[i], rgbx * coverage)
proc blendLineMaskNeon*(
line: ptr UncheckedArray[ColorRGBX], rgbx: ColorRGBX, len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
line[i] = blendMask(line[i], rgbx)
inc i
let alpha = vmovq_n_u8(rgbx.a)
while i < len - 16:
let backdrop = vld4q_u8(line[i].addr)
var blended: uint8x16x4
blended.val[0] = multiplyDiv255(backdrop.val[0], alpha)
blended.val[1] = multiplyDiv255(backdrop.val[1], alpha)
blended.val[2] = multiplyDiv255(backdrop.val[2], alpha)
blended.val[3] = multiplyDiv255(backdrop.val[3], alpha)
vst4q_u8(line[i].addr, blended)
i += 16
for i in i ..< len:
line[i] = blendMask(line[i], rgbx)
proc blendLineMaskNeon*(
a, b: ptr UncheckedArray[ColorRGBX], len: int
) {.simd.} =
var i: int
while (cast[uint](a[i].addr) and 15) != 0:
while i < len and (cast[uint](a[i].addr) and 15) != 0:
a[i] = blendMask(a[i], b[i])
inc i
@ -482,22 +625,12 @@ proc blendLineMaskNeon*(
if mask == uint64.high:
discard
else:
template multiply(c, a: uint8x8): uint8x8 =
let ca = vmull_u8(c, a)
vraddhn_u16(ca, vrshrq_n_u16(ca, 8))
template multiply(c, a: uint8x16): uint8x16 =
vcombine_u8(
multiply(vget_low_u8(c), vget_low_u8(a)),
multiply(vget_high_u8(c), vget_high_u8(a))
)
let backdrop = vld4q_u8(a[i].addr)
var blended: uint8x16x4
blended.val[0] = multiply(backdrop.val[0], source.val[3])
blended.val[1] = multiply(backdrop.val[1], source.val[3])
blended.val[2] = multiply(backdrop.val[2], source.val[3])
blended.val[3] = multiply(backdrop.val[3], source.val[3])
blended.val[0] = multiplyDiv255(backdrop.val[0], source.val[3])
blended.val[1] = multiplyDiv255(backdrop.val[1], source.val[3])
blended.val[2] = multiplyDiv255(backdrop.val[2], source.val[3])
blended.val[3] = multiplyDiv255(backdrop.val[3], source.val[3])
vst4q_u8(a[i].addr, blended)
i += 16
@ -505,5 +638,66 @@ proc blendLineMaskNeon*(
for i in i ..< len:
a[i] = blendMask(a[i], b[i])
proc blendLineCoverageMaskNeon*(
line: ptr UncheckedArray[ColorRGBX],
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
let coverage = coverages[i]
if coverage == 0:
line[i] = rgbx(0, 0, 0, 0)
elif coverage == 255:
discard
else:
line[i] = blendMask(line[i], rgbx * coverage)
inc i
let
alpha = vmovq_n_u8(rgbx.a)
vecZero = vmovq_n_u8(0)
vec255 = vmovq_n_u8(255)
while i < len - 16:
let
coverage = vld1q_u8(coverages[i].addr)
eqZero = vceqq_u8(coverage, vecZero)
eq255 = vceqq_u8(coverage, vec255)
maskZero = vget_lane_u64(cast[uint64x1](
vand_u8(vget_low_u8(eqZero), vget_high_u8(eqZero)
)), 0)
mask255 = vget_lane_u64(cast[uint64x1](
vand_u8(vget_low_u8(eq255), vget_high_u8(eq255)
)), 0)
if maskZero == uint64.high:
vst1q_u8(line[i].addr, vecZero)
vst1q_u8(line[i + 4].addr, vecZero)
vst1q_u8(line[i + 8].addr, vecZero)
vst1q_u8(line[i + 12].addr, vecZero)
elif mask255 == uint64.high and rgbx.a == 255:
discard
else:
let
backdrop = vld4q_u8(line[i].addr)
alpha = multiplyDiv255(alpha, coverage)
var blended: uint8x16x4
blended.val[0] = multiplyDiv255(backdrop.val[0], alpha)
blended.val[1] = multiplyDiv255(backdrop.val[1], alpha)
blended.val[2] = multiplyDiv255(backdrop.val[2], alpha)
blended.val[3] = multiplyDiv255(backdrop.val[3], alpha)
vst4q_u8(line[i].addr, blended)
i += 16
for i in i ..< len:
let coverage = coverages[i]
if coverage == 0:
line[i] = rgbx(0, 0, 0, 0)
elif coverage == 255:
discard
else:
line[i] = blendMask(line[i], rgbx * coverage)
when defined(release):
{.pop.}

View file

@ -528,7 +528,7 @@ proc blendLineCoverageOverwriteSse2*(
coverages: ptr UncheckedArray[uint8],
rgbx: ColorRGBX,
len: int
) {.simd.} =
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
let coverage = coverages[i]
@ -691,7 +691,7 @@ proc blendLineMaskSse2*(
a, b: ptr UncheckedArray[ColorRGBX], len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](a[i].addr) and 15) != 0:
while i < len and (cast[uint](a[i].addr) and 15) != 0:
a[i] = blendMask(a[i], b[i])
inc i
@ -721,7 +721,7 @@ proc blendLineCoverageMaskSse2*(
len: int
) {.simd.} =
var i: int
while i < len and (cast[uint](line[i].addr) and 15) != 0:
while i < len and (cast[uint](line[i].addr) and 15) != 0:
let coverage = coverages[i]
if coverage == 0:
line[i] = rgbx(0, 0, 0, 0)