Merge pull request #344 from guzba/master

bmOverwrite fast paths, move some stuff
This commit is contained in:
treeform 2021-12-12 16:54:25 -08:00 committed by GitHub
commit 360ee9e722
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 841 additions and 689 deletions

View file

@ -1,10 +1,178 @@
import benchy, cairo, chroma, math, pixie, pixie/paths {.all.}, strformat
when defined(amd64) and not defined(pixieNoSimd):
import nimsimd/sse2, pixie/internal
proc doDiff(a, b: Image, name: string) =
let (diffScore, diffImage) = diff(a, b)
echo &"{name} score: {diffScore}"
diffImage.writeFile(&"{name}_diff.png")
when defined(release):
{.push checks: off.}
proc fillMask(
shapes: seq[seq[Vec2]], width, height: int, windingRule = wrNonZero
): Mask =
result = newMask(width, height)
let
segments = shapes.shapesToSegments()
bounds = computeBounds(segments).snapToPixels()
startY = max(0, bounds.y.int)
pathHeight = min(height, (bounds.y + bounds.h).int)
partitioning = partitionSegments(segments, startY, pathHeight)
width = width.float32
var
hits = newSeq[(float32, int16)](partitioning.maxEntryCount)
numHits: int
aa: bool
for y in startY ..< pathHeight:
computeCoverage(
cast[ptr UncheckedArray[uint8]](result.data[result.dataIndex(0, y)].addr),
hits,
numHits,
aa,
width,
y,
0,
partitioning,
windingRule
)
if not aa:
for (prevAt, at, count) in hits.walk(numHits, windingRule, y, width):
let
startIndex = result.dataIndex(prevAt.int, y)
len = at.int - prevAt.int
fillUnsafe(result.data, 255, startIndex, len)
proc fillMask*(
path: SomePath, width, height: int, windingRule = wrNonZero
): Mask =
## Returns a new mask with the path filled. This is a faster alternative
## to `newMask` + `fillPath`.
let shapes = parseSomePath(path, true, 1)
shapes.fillMask(width, height, windingRule)
proc fillImage(
shapes: seq[seq[Vec2]],
width, height: int,
color: SomeColor,
windingRule = wrNonZero
): Image =
result = newImage(width, height)
let
mask = shapes.fillMask(width, height, windingRule)
rgbx = color.rgbx()
var i: int
when defined(amd64) and not defined(pixieNoSimd):
let
colorVec = mm_set1_epi32(cast[int32](rgbx))
oddMask = mm_set1_epi16(cast[int16](0xff00))
div255 = mm_set1_epi16(cast[int16](0x8081))
vec255 = mm_set1_epi32(cast[int32](uint32.high))
vecZero = mm_setzero_si128()
colorVecEven = mm_slli_epi16(colorVec, 8)
colorVecOdd = mm_and_si128(colorVec, oddMask)
iterations = result.data.len div 16
for _ in 0 ..< iterations:
var coverageVec = mm_loadu_si128(mask.data[i].addr)
if mm_movemask_epi8(mm_cmpeq_epi16(coverageVec, vecZero)) != 0xffff:
if mm_movemask_epi8(mm_cmpeq_epi32(coverageVec, vec255)) == 0xffff:
for q in [0, 4, 8, 12]:
mm_storeu_si128(result.data[i + q].addr, colorVec)
else:
for q in [0, 4, 8, 12]:
var unpacked = unpackAlphaValues(coverageVec)
# Shift the coverages from `a` to `g` and `a` for multiplying
unpacked = mm_or_si128(unpacked, mm_srli_epi32(unpacked, 16))
var
sourceEven = mm_mulhi_epu16(colorVecEven, unpacked)
sourceOdd = mm_mulhi_epu16(colorVecOdd, unpacked)
sourceEven = mm_srli_epi16(mm_mulhi_epu16(sourceEven, div255), 7)
sourceOdd = mm_srli_epi16(mm_mulhi_epu16(sourceOdd, div255), 7)
mm_storeu_si128(
result.data[i + q].addr,
mm_or_si128(sourceEven, mm_slli_epi16(sourceOdd, 8))
)
coverageVec = mm_srli_si128(coverageVec, 4)
i += 16
let channels = [rgbx.r.uint32, rgbx.g.uint32, rgbx.b.uint32, rgbx.a.uint32]
for i in i ..< result.data.len:
let coverage = mask.data[i]
if coverage == 255:
result.data[i] = rgbx
elif coverage != 0:
result.data[i].r = ((channels[0] * coverage) div 255).uint8
result.data[i].g = ((channels[1] * coverage) div 255).uint8
result.data[i].b = ((channels[2] * coverage) div 255).uint8
result.data[i].a = ((channels[3] * coverage) div 255).uint8
proc fillImage*(
path: SomePath, width, height: int, color: SomeColor, windingRule = wrNonZero
): Image =
## Returns a new image with the path filled. This is a faster alternative
## to `newImage` + `fillPath`.
let shapes = parseSomePath(path, false, 1)
shapes.fillImage(width, height, color, windingRule)
proc strokeMask*(
path: SomePath,
width, height: int,
strokeWidth: float32 = 1.0,
lineCap = lcButt,
lineJoin = ljMiter,
miterLimit = defaultMiterLimit,
dashes: seq[float32] = @[]
): Mask =
## Returns a new mask with the path stroked. This is a faster alternative
## to `newImage` + `strokePath`.
let strokeShapes = strokeShapes(
parseSomePath(path, false, 1),
strokeWidth,
lineCap,
lineJoin,
miterLimit,
dashes,
1
)
result = strokeShapes.fillMask(width, height, wrNonZero)
proc strokeImage*(
path: SomePath,
width, height: int,
color: SomeColor,
strokeWidth: float32 = 1.0,
lineCap = lcButt,
lineJoin = ljMiter,
miterLimit = defaultMiterLimit,
dashes: seq[float32] = @[]
): Image =
## Returns a new image with the path stroked. This is a faster alternative
## to `newImage` + `strokePath`.
let strokeShapes = strokeShapes(
parseSomePath(path, false, 1),
strokeWidth,
lineCap,
lineJoin,
miterLimit,
dashes,
1
)
result = strokeShapes.fillImage(width, height, color, wrNonZero)
when defined(release):
{.pop.}
block:
let path = newPath()
path.moveTo(0, 0)
@ -189,6 +357,23 @@ block:
# doDiff(readImage("cairo4.png"), a, "4")
var b: Image
let paint = newPaint(pkSolid)
paint.color = color(1, 0, 0, 0.5)
paint.blendMode = bmOverwrite
timeIt "pixie4 overwrite":
b = newImage(1000, 1000)
let p = newPath()
p.moveTo(shapes[0][0])
for shape in shapes:
for v in shape:
p.lineTo(v)
b.fillPath(p, paint)
# b.writeFile("b.png")
timeIt "pixie4 mask":
let mask = newMask(1000, 1000)

View file

@ -0,0 +1,130 @@
import benchy, cairo, pixie
block:
let
backdrop = imageSurfaceCreateFromPng("tests/fileformats/svg/masters/dragon2.png")
source = imageSurfaceCreateFromPng("tests/fileformats/svg/masters/Ghostscript_Tiger.png")
tmp = imageSurfaceCreate(FORMAT_ARGB32, 1568, 940)
ctx = tmp.create()
timeIt "cairo draw basic":
ctx.setSource(backdrop, 0, 0)
ctx.paint()
ctx.setSource(source, 0, 0)
ctx.paint()
tmp.flush()
# echo tmp.writeToPng("tmp.png")
block:
let
backdrop = readImage("tests/fileformats/svg/masters/dragon2.png")
source = readImage("tests/fileformats/svg/masters/Ghostscript_Tiger.png")
tmp = newImage(1568, 940)
timeIt "isOneColor":
doAssert not backdrop.isOneColor()
timeIt "pixie draw basic":
tmp.draw(backdrop)
tmp.draw(source)
# tmp.writeFile("tmp2.png")
block:
let
backdrop = imageSurfaceCreateFromPng("tests/fileformats/svg/masters/dragon2.png")
source = imageSurfaceCreateFromPng("tests/fileformats/svg/masters/Ghostscript_Tiger.png")
tmp = imageSurfaceCreate(FORMAT_ARGB32, 1568, 940)
ctx = tmp.create()
timeIt "cairo draw smooth":
var
mat = mat3()
matrix = cairo.Matrix(
xx: mat[0, 0],
yx: mat[0, 1],
xy: mat[1, 0],
yy: mat[1, 1],
x0: mat[2, 0],
y0: mat[2, 1],
)
ctx.setMatrix(matrix.unsafeAddr)
ctx.setSource(backdrop, 0, 0)
ctx.paint()
mat = translate(vec2(0.5, 0.5))
matrix = cairo.Matrix(
xx: mat[0, 0],
yx: mat[0, 1],
xy: mat[1, 0],
yy: mat[1, 1],
x0: mat[2, 0],
y0: mat[2, 1],
)
ctx.setMatrix(matrix.unsafeAddr)
ctx.setSource(source, 0, 0)
ctx.paint()
tmp.flush()
# echo tmp.writeToPng("tmp.png")
block:
let
backdrop = readImage("tests/fileformats/svg/masters/dragon2.png")
source = readImage("tests/fileformats/svg/masters/Ghostscript_Tiger.png")
tmp = newImage(1568, 940)
timeIt "pixie draw smooth":
tmp.draw(backdrop)
tmp.draw(source, translate(vec2(0.5, 0.5)))
# tmp.writeFile("tmp2.png")
block:
let
backdrop = imageSurfaceCreateFromPng("tests/fileformats/svg/masters/dragon2.png")
source = imageSurfaceCreateFromPng("tests/fileformats/svg/masters/Ghostscript_Tiger.png")
tmp = imageSurfaceCreate(FORMAT_ARGB32, 1568, 940)
ctx = tmp.create()
timeIt "cairo draw smooth rotated":
var
mat = mat3()
matrix = cairo.Matrix(
xx: mat[0, 0],
yx: mat[0, 1],
xy: mat[1, 0],
yy: mat[1, 1],
x0: mat[2, 0],
y0: mat[2, 1],
)
ctx.setMatrix(matrix.unsafeAddr)
ctx.setSource(backdrop, 0, 0)
ctx.paint()
mat = rotate(15.toRadians)
matrix = cairo.Matrix(
xx: mat[0, 0],
yx: mat[0, 1],
xy: mat[1, 0],
yy: mat[1, 1],
x0: mat[2, 0],
y0: mat[2, 1],
)
ctx.setMatrix(matrix.unsafeAddr)
ctx.setSource(source, 0, 0)
ctx.paint()
tmp.flush()
# echo tmp.writeToPng("tmp.png")
block:
let
backdrop = readImage("tests/fileformats/svg/masters/dragon2.png")
source = readImage("tests/fileformats/svg/masters/Ghostscript_Tiger.png")
tmp = newImage(1568, 940)
timeIt "pixie draw smooth rotated":
tmp.draw(backdrop)
tmp.draw(source, rotate(15.toRadians))
# tmp.writeFile("tmp2.png")

View file

@ -1,7 +1,7 @@
## Load and Save SVG files.
import cairo, chroma, pixie/common, pixie/images, pixie/paints, pixie/paths {.all.},
strutils, tables, vmath, xmlparser, xmltree
import cairo, chroma, pixie/common, pixie/images, pixie/paints, strutils,
tables, vmath, xmlparser, xmltree
include pixie/paths
@ -580,7 +580,7 @@ proc decodeSvg*(data: string, width = 0, height = 0): Image =
let
bgra = pixels[result.dataIndex(x, y)]
rgba = rgba(bgra[2], bgra[1], bgra[0], bgra[3])
result.setRgbaUnsafe(x, y, rgba.rgbx())
result.unsafe[x, y] = rgba.rgbx()
except PixieError as e:
raise e
except:

426
experiments/sweeps4.nim Normal file
View file

@ -0,0 +1,426 @@
when defined(pixieSweeps):
import algorithm
proc pixelCover(a0, b0: Vec2): float32 =
## Returns the amount of area a given segment sweeps to the right
## in a [0,0 to 1,1] box.
var
a = a0
b = b0
aI: Vec2
bI: Vec2
area: float32 = 0.0
if (a.x < 0 and b.x < 0) or # Both to the left.
(a.x == b.x): # Vertical line
# Area of the rectangle:
return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0))
else:
# y = mm*x + bb
let
mm: float32 = (b.y - a.y) / (b.x - a.x)
bb: float32 = a.y - mm * a.x
if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1:
# A is in pixel bounds.
aI = a
else:
aI = vec2((0 - bb) / mm, 0)
if aI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1)
aI = vec2(0, y.clamp(0, 1))
elif aI.x > 1:
let y = mm * 1 + bb
aI = vec2(1, y.clamp(0, 1))
if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1:
# B is in pixel bounds.
bI = b
else:
bI = vec2((1 - bb) / mm, 1)
if bI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1)
bI = vec2(0, y.clamp(0, 1))
elif bI.x > 1:
let y = mm * 1 + bb
bI = vec2(1, y.clamp(0, 1))
area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y)
return area
proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t > 0 and t < 1:
at = a.at + (t * s1)
return true
type
Trapezoid = object
nw, ne, se, sw: Vec2
SweepLine = object
#m, x, b: float32
atx, tox: float32
winding: int16
proc toLine(s: (Segment, int16)): SweepLine =
var line = SweepLine()
line.atx = s[0].at.x
line.tox = s[0].to.x
# y = mx + b
# line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x)
# line.b = s.at.y - line.m * s.at.x
line.winding = s[1]
return line
proc intersectsYLine(
y: float32, s: Segment, atx: var float32
): bool {.inline.} =
let
s2y = s.to.y - s.at.y
denominator = -s2y
numerator = s.at.y - y
u = numerator / denominator
if u >= 0 and u <= 1:
let at = s.at + (u * vec2(s.to.x - s.at.x, s2y))
atx = at.x
return true
proc binaryInsert(arr: var seq[float32], v: float32) =
if arr.len == 0:
arr.add(v)
return
var
L = 0
R = arr.len - 1
while L < R:
let m = (L + R) div 2
if arr[m] ~= v:
return
elif arr[m] < v:
L = m + 1
else: # arr[m] > v:
R = m - 1
if arr[L] ~= v:
return
elif arr[L] > v:
arr.insert(v, L)
else:
arr.insert(v, L + 1)
proc sortSegments(segments: var seq[(Segment, int16)], inl, inr: int) =
## Quicksort + insertion sort, in-place and faster than standard lib sort.
let n = inr - inl + 1
if n < 32: # Use insertion sort for the rest
for i in inl + 1 .. inr:
var
j = i - 1
k = i
while j >= 0 and segments[j][0].at.y > segments[k][0].at.y:
swap(segments[j + 1], segments[j])
dec j
dec k
return
var
l = inl
r = inr
let p = segments[l + n div 2][0].at.y
while l <= r:
if segments[l][0].at.y < p:
inc l
elif segments[r][0].at.y > p:
dec r
else:
swap(segments[l], segments[r])
inc l
dec r
sortSegments(segments, inl, r)
sortSegments(segments, l, inr)
proc sortSweepLines(segments: var seq[SweepLine], inl, inr: int) =
## Quicksort + insertion sort, in-place and faster than standard lib sort.
proc avg(line: SweepLine): float32 {.inline.} =
(line.tox + line.atx) / 2.float32
let n = inr - inl + 1
if n < 32: # Use insertion sort for the rest
for i in inl + 1 .. inr:
var
j = i - 1
k = i
while j >= 0 and segments[j].avg > segments[k].avg:
swap(segments[j + 1], segments[j])
dec j
dec k
return
var
l = inl
r = inr
let p = segments[l + n div 2].avg
while l <= r:
if segments[l].avg < p:
inc l
elif segments[r].avg > p:
dec r
else:
swap(segments[l], segments[r])
inc l
dec r
sortSweepLines(segments, inl, r)
sortSweepLines(segments, l, inr)
proc fillShapes(
image: Image,
shapes: seq[seq[Vec2]],
color: SomeColor,
windingRule: WindingRule,
blendMode: BlendMode
) =
let rgbx = color.rgbx
var segments = shapes.shapesToSegments()
let
bounds = computeBounds(segments).snapToPixels()
startX = max(0, bounds.x.int)
if segments.len == 0 or bounds.w.int == 0 or bounds.h.int == 0:
return
# const q = 1/10
# for i in 0 ..< segments.len:
# segments[i][0].at.x = quantize(segments[i][0].at.x, q)
# segments[i][0].at.y = quantize(segments[i][0].at.y, q)
# segments[i][0].to.x = quantize(segments[i][0].to.x, q)
# segments[i][0].to.y = quantize(segments[i][0].to.y, q)
# Create sorted segments.
segments.sortSegments(0, segments.high)
# Compute cut lines
var cutLines: seq[float32]
for s in segments:
cutLines.binaryInsert(s[0].at.y)
cutLines.binaryInsert(s[0].to.y)
var
# Dont add bottom cutLine.
sweeps = newSeq[seq[SweepLine]](cutLines.len - 1)
lastSeg = 0
i = 0
while i < sweeps.len:
if lastSeg < segments.len:
while segments[lastSeg][0].at.y == cutLines[i]:
let s = segments[lastSeg]
if s[0].to.y != cutLines[i + 1]:
var atx: float32
var seg = s[0]
for j in i ..< sweeps.len:
let y = cutLines[j + 1]
if intersectsYLine(y, seg, atx):
sweeps[j].add(toLine((segment(seg.at, vec2(atx, y)), s[1])))
seg = segment(vec2(atx, y), seg.to)
else:
if seg.at.y != seg.to.y:
sweeps[j].add(toLine(s))
break
else:
sweeps[i].add(toLine(s))
inc lastSeg
if lastSeg >= segments.len:
break
inc i
# i = 0
# while i < sweeps.len:
# # TODO: Maybe finds all cuts first, add them to array, cut all lines at once.
# var crossCuts: seq[float32]
# # echo i, " cut?"
# for aIndex in 0 ..< sweeps[i].len:
# let a = sweeps[i][aIndex]
# # echo i, ":", sweeps.len, ":", cutLines.len
# let aSeg = segment(vec2(a.atx, cutLines[i]), vec2(a.tox, cutLines[i+1]))
# for bIndex in aIndex + 1 ..< sweeps[i].len:
# let b = sweeps[i][bIndex]
# let bSeg = segment(vec2(b.atx, cutLines[i]), vec2(b.tox, cutLines[i+1]))
# var at: Vec2
# if intersectsInner(aSeg, bSeg, at):
# crossCuts.binaryInsert(at.y)
# if crossCuts.len > 0:
# var
# thisSweep = sweeps[i]
# yTop = cutLines[i]
# yBottom = cutLines[i + 1]
# sweeps[i].setLen(0)
# for k in crossCuts:
# let prevLen = cutLines.len
# cutLines.binaryInsert(k)
# if prevLen != cutLines.len:
# sweeps.insert(newSeq[SweepLine](), i + 1)
# for a in thisSweep:
# var seg = segment(vec2(a.atx, yTop), vec2(a.tox, yBottom))
# var at: Vec2
# for j, cutterLine in crossCuts:
# if intersects(line(vec2(0, cutterLine), vec2(1, cutterLine)), seg, at):
# sweeps[i+j].add(toLine((segment(seg.at, at), a.winding)))
# seg = segment(at, seg.to)
# sweeps[i+crossCuts.len].add(toLine((seg, a.winding)))
# i += crossCuts.len
# inc i
i = 0
while i < sweeps.len:
# Sort the sweep by X
sweeps[i].sortSweepLines(0, sweeps[i].high)
# Do winding order
var
pen = 0
prevFill = false
j = 0
while j < sweeps[i].len:
let a = sweeps[i][j]
if a.winding == 1:
inc pen
if a.winding == -1:
dec pen
let thisFill = shouldFill(windingRule, pen)
if prevFill == thisFill:
# Remove this sweep line.
sweeps[i].delete(j)
continue
prevFill = thisFill
inc j
inc i
# Used to debug sweeps:
# for s in 0 ..< sweeps.len:
# let
# y1 = cutLines[s]
# echo "M -100 ", y1
# echo "L 300 ", y1
# for line in sweeps[s]:
# let
# nw = vec2(line.atx, cutLines[s])
# sw = vec2(line.tox, cutLines[s + 1])
# echo "M ", nw.x, " ", nw.y
# echo "L ", sw.x, " ", sw.y
proc computeCoverage(
coverages: var seq[uint16],
y: int,
startX: int,
cutLines: seq[float32],
currCutLine: int,
sweep: seq[SweepLine]
) =
if cutLines[currCutLine + 1] - cutLines[currCutLine] < 1/256:
# TODO some thing about micro sweeps
return
let
sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
yFracTop = ((y.float32 - cutLines[currCutLine]) / sweepHeight).clamp(0, 1)
yFracBottom = ((y.float32 + 1 - cutLines[currCutLine]) /
sweepHeight).clamp(0, 1)
var i = 0
while i < sweep.len:
let
nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop)
neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop)
swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom)
seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom)
minWi = min(nwX, swX).int #.clamp(startX, coverages.len + startX)
maxWi = max(nwX, swX).ceil.int #.clamp(startX, coverages.len + startX)
minEi = min(neX, seX).int #.clamp(startX, coverages.len + startX)
maxEi = max(neX, seX).ceil.int #.clamp(startX, coverages.len + startX)
let
nw = vec2(sweep[i+0].atx, cutLines[currCutLine])
sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1])
f16 = (256 * 256 - 1).float32
for x in minWi ..< maxWi:
var area = pixelCover(
nw - vec2(x.float32, y.float32),
sw - vec2(x.float32, y.float32)
)
coverages[x - startX] += (area * f16).uint16
let x = maxWi
var midArea = pixelCover(
nw - vec2(x.float32, y.float32),
sw - vec2(x.float32, y.float32)
)
for x in maxWi ..< maxEi:
coverages[x - startX] += (midArea * f16).uint16
let
ne = vec2(sweep[i+1].atx, cutLines[currCutLine])
se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1])
for x in minEi ..< maxEi:
var area = pixelCover(
ne - vec2(x.float32, y.float32),
se - vec2(x.float32, y.float32)
)
coverages[x - startX] -= (area * f16).uint16
i += 2
var
currCutLine = 0
coverages16 = newSeq[uint16](bounds.w.int)
coverages8 = newSeq[uint8](bounds.w.int)
for scanLine in max(cutLines[0].int, 0) ..< min(cutLines[^1].ceil.int, image.height):
zeroMem(coverages16[0].addr, coverages16.len * 2)
coverages16.computeCoverage(
scanLine, startX, cutLines, currCutLine, sweeps[currCutLine])
while cutLines[currCutLine + 1] < scanLine.float + 1.0:
inc currCutLine
if currCutLine == sweeps.len:
break
coverages16.computeCoverage(
scanLine, startX, cutLines, currCutLine, sweeps[currCutLine])
for i in 0 ..< coverages16.len:
coverages8[i] = (coverages16[i] shr 8).uint8
image.fillCoverage(
rgbx,
startX = startX,
y = scanLine,
coverages8,
blendMode
)
else:

View file

@ -502,8 +502,6 @@ proc masker*(blendMode: BlendMode): Masker {.raises: [PixieError].} =
raise newException(PixieError, "No masker for " & $blendMode)
when defined(amd64) and not defined(pixieNoSimd):
import nimsimd/sse2
type
BlenderSimd* = proc(blackdrop, source: M128i): M128i {.gcsafe, raises: [].}
## Function signature returned by blenderSimd.

View file

@ -1335,7 +1335,10 @@ proc fillCoverage(
# If the coverages are not all zero
if mm_movemask_epi8(mm_cmpeq_epi32(coverageVec, vec255)) == 0xffff:
# If the coverages are all 255
if blendMode == bmNormal:
if blendMode == bmOverwrite:
for i in 0 ..< 4:
mm_storeu_si128(image.data[index + i * 4].addr, colorVec)
elif blendMode == bmNormal:
if rgbx.a == 255:
for i in 0 ..< 4:
mm_storeu_si128(image.data[index + i * 4].addr, colorVec)
@ -1375,11 +1378,14 @@ proc fillCoverage(
source = mm_or_si128(sourceEven, mm_slli_epi16(sourceOdd, 8))
let backdrop = mm_loadu_si128(image.data[index + i * 4].addr)
mm_storeu_si128(
image.data[index + i * 4].addr,
blendProc(backdrop, source)
)
if blendMode == bmOverwrite:
mm_storeu_si128(image.data[index + i * 4].addr, source)
else:
let backdrop = mm_loadu_si128(image.data[index + i * 4].addr)
mm_storeu_si128(
image.data[index + i * 4].addr,
blendProc(backdrop, source)
)
coverageVec = mm_srli_si128(coverageVec, 4)
@ -1395,24 +1401,28 @@ proc fillCoverage(
x += 16
let blender = blendMode.blender()
while x < startX + coverages.len:
for x in x ..< startX + coverages.len:
let coverage = coverages[x - startX]
if coverage != 0 or blendMode == bmExcludeMask:
if blendMode == bmNormal and coverage == 255 and rgbx.a == 255:
# Skip blending
image.unsafe[x, y] = rgbx
continue
var source = rgbx
if coverage != 255:
source.r = ((source.r.uint32 * coverage) div 255).uint8
source.g = ((source.g.uint32 * coverage) div 255).uint8
source.b = ((source.b.uint32 * coverage) div 255).uint8
source.a = ((source.a.uint32 * coverage) div 255).uint8
if blendMode == bmOverwrite:
image.unsafe[x, y] = source
else:
var source = rgbx
if coverage != 255:
source.r = ((source.r.uint32 * coverage) div 255).uint8
source.g = ((source.g.uint32 * coverage) div 255).uint8
source.b = ((source.b.uint32 * coverage) div 255).uint8
source.a = ((source.a.uint32 * coverage) div 255).uint8
let backdrop = image.unsafe[x, y]
image.unsafe[x, y] = blender(backdrop, source)
elif blendMode == bmMask:
image.unsafe[x, y] = rgbx(0, 0, 0, 0)
inc x
if blendMode == bmMask:
image.clearUnsafe(0, y, startX, y)
@ -1429,31 +1439,36 @@ proc fillCoverage(
if blendMode.hasSimdMasker():
let
maskerSimd = blendMode.maskerSimd()
zeroVec = mm_setzero_si128()
vecZero = mm_setzero_si128()
for _ in 0 ..< coverages.len div 16:
let
index = mask.dataIndex(x, y)
coverage = mm_loadu_si128(coverages[x - startX].unsafeAddr)
if mm_movemask_epi8(mm_cmpeq_epi16(coverage, zeroVec)) != 0xffff:
coverageVec = mm_loadu_si128(coverages[x - startX].unsafeAddr)
if mm_movemask_epi8(mm_cmpeq_epi16(coverageVec, vecZero)) != 0xffff:
# If the coverages are not all zero
let backdrop = mm_loadu_si128(mask.data[index].addr)
mm_storeu_si128(
mask.data[index].addr,
maskerSimd(backdrop, coverage)
)
if blendMode == bmOverwrite:
mm_storeu_si128(mask.data[index].addr, coverageVec)
else:
let backdrop = mm_loadu_si128(mask.data[index].addr)
mm_storeu_si128(
mask.data[index].addr,
maskerSimd(backdrop, coverageVec)
)
elif blendMode == bmMask:
mm_storeu_si128(mask.data[index].addr, zeroVec)
mm_storeu_si128(mask.data[index].addr, vecZero)
x += 16
let masker = blendMode.masker()
while x < startX + coverages.len:
for x in x ..< startX + coverages.len:
let coverage = coverages[x - startX]
if coverage != 0 or blendMode == bmExcludeMask:
let backdrop = mask.unsafe[x, y]
mask.unsafe[x, y] = masker(backdrop, coverage)
if blendMode == bmOverwrite:
mask.unsafe[x, y] = coverage
else:
let backdrop = mask.unsafe[x, y]
mask.unsafe[x, y] = masker(backdrop, coverage)
elif blendMode == bmMask:
mask.unsafe[x, y] = 0
inc x
if blendMode == bmMask:
mask.clearUnsafe(0, y, startX, y)
@ -1481,7 +1496,7 @@ proc fillHits(
filledTo = fillStart + fillLen
if blendMode == bmNormal and rgbx.a == 255:
if blendMode == bmOverwrite or (blendMode == bmNormal and rgbx.a == 255):
fillUnsafe(image.data, rgbx, image.dataIndex(fillStart, y), fillLen)
continue
@ -1543,7 +1558,7 @@ proc fillHits(
filledTo = fillStart + fillLen
if blendMode == bmNormal or blendMode == bmOverwrite:
if blendMode in {bmNormal, bmOverwrite}:
fillUnsafe(mask.data, 255, mask.dataIndex(fillStart, y), fillLen)
continue
@ -1577,7 +1592,59 @@ proc fillShapes(
color: SomeColor,
windingRule: WindingRule,
blendMode: BlendMode
)
) =
# Figure out the total bounds of all the shapes,
# rasterize only within the total bounds
let
rgbx = color.asRgbx()
segments = shapes.shapesToSegments()
bounds = computeBounds(segments).snapToPixels()
startX = max(0, bounds.x.int)
startY = max(0, bounds.y.int)
pathHeight = min(image.height, (bounds.y + bounds.h).int)
partitioning = partitionSegments(segments, startY, pathHeight - startY)
var
coverages = newSeq[uint8](bounds.w.int)
hits = newSeq[(float32, int16)](partitioning.maxEntryCount)
numHits: int
aa: bool
for y in startY ..< pathHeight:
computeCoverage(
cast[ptr UncheckedArray[uint8]](coverages[0].addr),
hits,
numHits,
aa,
image.width.float32,
y,
startX,
partitioning,
windingRule
)
if aa:
image.fillCoverage(
rgbx,
startX,
y,
coverages,
blendMode
)
zeroMem(coverages[0].addr, coverages.len)
else:
image.fillHits(
rgbx,
startX,
y,
hits,
numHits,
windingRule,
blendMode
)
if blendMode == bmMask:
image.clearUnsafe(0, 0, 0, startY)
image.clearUnsafe(0, pathHeight, 0, image.height)
proc fillShapes(
mask: Mask,
@ -2013,647 +2080,3 @@ proc strokeOverlaps*(
)
strokeShapes.transform(transform)
strokeShapes.overlaps(test, wrNonZero)
when defined(pixieSweeps):
import algorithm
proc pixelCover(a0, b0: Vec2): float32 =
## Returns the amount of area a given segment sweeps to the right
## in a [0,0 to 1,1] box.
var
a = a0
b = b0
aI: Vec2
bI: Vec2
area: float32 = 0.0
if (a.x < 0 and b.x < 0) or # Both to the left.
(a.x == b.x): # Vertical line
# Area of the rectangle:
return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0))
else:
# y = mm*x + bb
let
mm: float32 = (b.y - a.y) / (b.x - a.x)
bb: float32 = a.y - mm * a.x
if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1:
# A is in pixel bounds.
aI = a
else:
aI = vec2((0 - bb) / mm, 0)
if aI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1)
aI = vec2(0, y.clamp(0, 1))
elif aI.x > 1:
let y = mm * 1 + bb
aI = vec2(1, y.clamp(0, 1))
if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1:
# B is in pixel bounds.
bI = b
else:
bI = vec2((1 - bb) / mm, 1)
if bI.x < 0:
let y = mm * 0 + bb
# Area of the extra rectangle.
area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1)
bI = vec2(0, y.clamp(0, 1))
elif bI.x > 1:
let y = mm * 1 + bb
bI = vec2(1, y.clamp(0, 1))
area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y)
return area
proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} =
## Checks if the a segment intersects b segment.
## If it returns true, at will have point of intersection
let
s1 = a.to - a.at
s2 = b.to - b.at
denominator = (-s2.x * s1.y + s1.x * s2.y)
s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator
t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator
if s > 0 and s < 1 and t > 0 and t < 1:
at = a.at + (t * s1)
return true
type
Trapezoid = object
nw, ne, se, sw: Vec2
SweepLine = object
#m, x, b: float32
atx, tox: float32
winding: int16
proc toLine(s: (Segment, int16)): SweepLine =
var line = SweepLine()
line.atx = s[0].at.x
line.tox = s[0].to.x
# y = mx + b
# line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x)
# line.b = s.at.y - line.m * s.at.x
line.winding = s[1]
return line
proc intersectsYLine(y: float32, s: Segment, atx: var float32): bool {.inline.} =
let
s2y = s.to.y - s.at.y
denominator = -s2y
numerator = s.at.y - y
u = numerator / denominator
if u >= 0 and u <= 1:
let at = s.at + (u * vec2(s.to.x - s.at.x, s2y))
atx = at.x
return true
proc binaryInsert(arr: var seq[float32], v: float32) =
if arr.len == 0:
arr.add(v)
return
var
L = 0
R = arr.len - 1
while L < R:
let m = (L + R) div 2
if arr[m] ~= v:
return
elif arr[m] < v:
L = m + 1
else: # arr[m] > v:
R = m - 1
if arr[L] ~= v:
return
elif arr[L] > v:
arr.insert(v, L)
else:
arr.insert(v, L + 1)
proc sortSegments(segments: var seq[(Segment, int16)], inl, inr: int) =
## Quicksort + insertion sort, in-place and faster than standard lib sort.
let n = inr - inl + 1
if n < 32: # Use insertion sort for the rest
for i in inl + 1 .. inr:
var
j = i - 1
k = i
while j >= 0 and segments[j][0].at.y > segments[k][0].at.y:
swap(segments[j + 1], segments[j])
dec j
dec k
return
var
l = inl
r = inr
let p = segments[l + n div 2][0].at.y
while l <= r:
if segments[l][0].at.y < p:
inc l
elif segments[r][0].at.y > p:
dec r
else:
swap(segments[l], segments[r])
inc l
dec r
sortSegments(segments, inl, r)
sortSegments(segments, l, inr)
proc sortSweepLines(segments: var seq[SweepLine], inl, inr: int) =
## Quicksort + insertion sort, in-place and faster than standard lib sort.
proc avg(line: SweepLine): float32 {.inline.} =
(line.tox + line.atx) / 2.float32
let n = inr - inl + 1
if n < 32: # Use insertion sort for the rest
for i in inl + 1 .. inr:
var
j = i - 1
k = i
while j >= 0 and segments[j].avg > segments[k].avg:
swap(segments[j + 1], segments[j])
dec j
dec k
return
var
l = inl
r = inr
let p = segments[l + n div 2].avg
while l <= r:
if segments[l].avg < p:
inc l
elif segments[r].avg > p:
dec r
else:
swap(segments[l], segments[r])
inc l
dec r
sortSweepLines(segments, inl, r)
sortSweepLines(segments, l, inr)
proc fillShapes(
image: Image,
shapes: seq[seq[Vec2]],
color: SomeColor,
windingRule: WindingRule,
blendMode: BlendMode
) =
let rgbx = color.rgbx
var segments = shapes.shapesToSegments()
let
bounds = computeBounds(segments).snapToPixels()
startX = max(0, bounds.x.int)
if segments.len == 0 or bounds.w.int == 0 or bounds.h.int == 0:
return
# const q = 1/10
# for i in 0 ..< segments.len:
# segments[i][0].at.x = quantize(segments[i][0].at.x, q)
# segments[i][0].at.y = quantize(segments[i][0].at.y, q)
# segments[i][0].to.x = quantize(segments[i][0].to.x, q)
# segments[i][0].to.y = quantize(segments[i][0].to.y, q)
# Create sorted segments.
segments.sortSegments(0, segments.high)
# Compute cut lines
var cutLines: seq[float32]
for s in segments:
cutLines.binaryInsert(s[0].at.y)
cutLines.binaryInsert(s[0].to.y)
var
# Dont add bottom cutLine.
sweeps = newSeq[seq[SweepLine]](cutLines.len - 1)
lastSeg = 0
i = 0
while i < sweeps.len:
if lastSeg < segments.len:
while segments[lastSeg][0].at.y == cutLines[i]:
let s = segments[lastSeg]
if s[0].to.y != cutLines[i + 1]:
var atx: float32
var seg = s[0]
for j in i ..< sweeps.len:
let y = cutLines[j + 1]
if intersectsYLine(y, seg, atx):
sweeps[j].add(toLine((segment(seg.at, vec2(atx, y)), s[1])))
seg = segment(vec2(atx, y), seg.to)
else:
if seg.at.y != seg.to.y:
sweeps[j].add(toLine(s))
break
else:
sweeps[i].add(toLine(s))
inc lastSeg
if lastSeg >= segments.len:
break
inc i
# i = 0
# while i < sweeps.len:
# # TODO: Maybe finds all cuts first, add them to array, cut all lines at once.
# var crossCuts: seq[float32]
# # echo i, " cut?"
# for aIndex in 0 ..< sweeps[i].len:
# let a = sweeps[i][aIndex]
# # echo i, ":", sweeps.len, ":", cutLines.len
# let aSeg = segment(vec2(a.atx, cutLines[i]), vec2(a.tox, cutLines[i+1]))
# for bIndex in aIndex + 1 ..< sweeps[i].len:
# let b = sweeps[i][bIndex]
# let bSeg = segment(vec2(b.atx, cutLines[i]), vec2(b.tox, cutLines[i+1]))
# var at: Vec2
# if intersectsInner(aSeg, bSeg, at):
# crossCuts.binaryInsert(at.y)
# if crossCuts.len > 0:
# var
# thisSweep = sweeps[i]
# yTop = cutLines[i]
# yBottom = cutLines[i + 1]
# sweeps[i].setLen(0)
# for k in crossCuts:
# let prevLen = cutLines.len
# cutLines.binaryInsert(k)
# if prevLen != cutLines.len:
# sweeps.insert(newSeq[SweepLine](), i + 1)
# for a in thisSweep:
# var seg = segment(vec2(a.atx, yTop), vec2(a.tox, yBottom))
# var at: Vec2
# for j, cutterLine in crossCuts:
# if intersects(line(vec2(0, cutterLine), vec2(1, cutterLine)), seg, at):
# sweeps[i+j].add(toLine((segment(seg.at, at), a.winding)))
# seg = segment(at, seg.to)
# sweeps[i+crossCuts.len].add(toLine((seg, a.winding)))
# i += crossCuts.len
# inc i
i = 0
while i < sweeps.len:
# Sort the sweep by X
sweeps[i].sortSweepLines(0, sweeps[i].high)
# Do winding order
var
pen = 0
prevFill = false
j = 0
while j < sweeps[i].len:
let a = sweeps[i][j]
if a.winding == 1:
inc pen
if a.winding == -1:
dec pen
let thisFill = shouldFill(windingRule, pen)
if prevFill == thisFill:
# Remove this sweep line.
sweeps[i].delete(j)
continue
prevFill = thisFill
inc j
inc i
# Used to debug sweeps:
# for s in 0 ..< sweeps.len:
# let
# y1 = cutLines[s]
# echo "M -100 ", y1
# echo "L 300 ", y1
# for line in sweeps[s]:
# let
# nw = vec2(line.atx, cutLines[s])
# sw = vec2(line.tox, cutLines[s + 1])
# echo "M ", nw.x, " ", nw.y
# echo "L ", sw.x, " ", sw.y
proc computeCoverage(
coverages: var seq[uint16],
y: int,
startX: int,
cutLines: seq[float32],
currCutLine: int,
sweep: seq[SweepLine]
) =
if cutLines[currCutLine + 1] - cutLines[currCutLine] < 1/256:
# TODO some thing about micro sweeps
return
let
sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine]
yFracTop = ((y.float32 - cutLines[currCutLine]) / sweepHeight).clamp(0, 1)
yFracBottom = ((y.float32 + 1 - cutLines[currCutLine]) /
sweepHeight).clamp(0, 1)
var i = 0
while i < sweep.len:
let
nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop)
neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop)
swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom)
seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom)
minWi = min(nwX, swX).int#.clamp(startX, coverages.len + startX)
maxWi = max(nwX, swX).ceil.int#.clamp(startX, coverages.len + startX)
minEi = min(neX, seX).int#.clamp(startX, coverages.len + startX)
maxEi = max(neX, seX).ceil.int#.clamp(startX, coverages.len + startX)
let
nw = vec2(sweep[i+0].atx, cutLines[currCutLine])
sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1])
f16 = (256 * 256 - 1).float32
for x in minWi ..< maxWi:
var area = pixelCover(
nw - vec2(x.float32, y.float32),
sw - vec2(x.float32, y.float32)
)
coverages[x - startX] += (area * f16).uint16
let x = maxWi
var midArea = pixelCover(
nw - vec2(x.float32, y.float32),
sw - vec2(x.float32, y.float32)
)
for x in maxWi ..< maxEi:
coverages[x - startX] += (midArea * f16).uint16
let
ne = vec2(sweep[i+1].atx, cutLines[currCutLine])
se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1])
for x in minEi ..< maxEi:
var area = pixelCover(
ne - vec2(x.float32, y.float32),
se - vec2(x.float32, y.float32)
)
coverages[x - startX] -= (area * f16).uint16
i += 2
var
currCutLine = 0
coverages16 = newSeq[uint16](bounds.w.int)
coverages8 = newSeq[uint8](bounds.w.int)
for scanLine in max(cutLines[0].int, 0) ..< min(cutLines[^1].ceil.int, image.height):
zeroMem(coverages16[0].addr, coverages16.len * 2)
coverages16.computeCoverage(
scanLine, startX, cutLines, currCutLine, sweeps[currCutLine])
while cutLines[currCutLine + 1] < scanLine.float + 1.0:
inc currCutLine
if currCutLine == sweeps.len:
break
coverages16.computeCoverage(
scanLine, startX, cutLines, currCutLine, sweeps[currCutLine])
for i in 0 ..< coverages16.len:
coverages8[i] = (coverages16[i] shr 8).uint8
image.fillCoverage(
rgbx,
startX = startX,
y = scanLine,
coverages8,
blendMode
)
else:
proc fillShapes(
image: Image,
shapes: seq[seq[Vec2]],
color: SomeColor,
windingRule: WindingRule,
blendMode: BlendMode
) =
# Figure out the total bounds of all the shapes,
# rasterize only within the total bounds
let
rgbx = color.asRgbx()
segments = shapes.shapesToSegments()
bounds = computeBounds(segments).snapToPixels()
startX = max(0, bounds.x.int)
startY = max(0, bounds.y.int)
pathHeight = min(image.height, (bounds.y + bounds.h).int)
partitioning = partitionSegments(segments, startY, pathHeight - startY)
var
coverages = newSeq[uint8](bounds.w.int)
hits = newSeq[(float32, int16)](partitioning.maxEntryCount)
numHits: int
aa: bool
for y in startY ..< pathHeight:
computeCoverage(
cast[ptr UncheckedArray[uint8]](coverages[0].addr),
hits,
numHits,
aa,
image.width.float32,
y,
startX,
partitioning,
windingRule
)
if aa:
image.fillCoverage(
rgbx,
startX,
y,
coverages,
blendMode
)
zeroMem(coverages[0].addr, coverages.len)
else:
image.fillHits(
rgbx,
startX,
y,
hits,
numHits,
windingRule,
blendMode
)
if blendMode == bmMask:
image.clearUnsafe(0, 0, 0, startY)
image.clearUnsafe(0, pathHeight, 0, image.height)
proc fillMask(
shapes: seq[seq[Vec2]], width, height: int, windingRule = wrNonZero
): Mask =
result = newMask(width, height)
let
segments = shapes.shapesToSegments()
bounds = computeBounds(segments).snapToPixels()
startY = max(0, bounds.y.int)
pathHeight = min(height, (bounds.y + bounds.h).int)
partitioning = partitionSegments(segments, startY, pathHeight)
width = width.float32
var
hits = newSeq[(float32, int16)](partitioning.maxEntryCount)
numHits: int
aa: bool
for y in startY ..< pathHeight:
computeCoverage(
cast[ptr UncheckedArray[uint8]](result.data[result.dataIndex(0, y)].addr),
hits,
numHits,
aa,
width,
y,
0,
partitioning,
windingRule
)
if not aa:
for (prevAt, at, count) in hits.walk(numHits, windingRule, y, width):
let
startIndex = result.dataIndex(prevAt.int, y)
len = at.int - prevAt.int
fillUnsafe(result.data, 255, startIndex, len)
proc fillMask*(
path: SomePath, width, height: int, windingRule = wrNonZero
): Mask =
## Returns a new mask with the path filled. This is a faster alternative
## to `newMask` + `fillPath`.
let shapes = parseSomePath(path, true, 1)
shapes.fillMask(width, height, windingRule)
proc fillImage(
shapes: seq[seq[Vec2]],
width, height: int,
color: SomeColor,
windingRule = wrNonZero
): Image =
result = newImage(width, height)
let
mask = shapes.fillMask(width, height, windingRule)
rgbx = color.rgbx()
var i: int
when defined(amd64) and not defined(pixieNoSimd):
let
colorVec = mm_set1_epi32(cast[int32](rgbx))
oddMask = mm_set1_epi16(cast[int16](0xff00))
div255 = mm_set1_epi16(cast[int16](0x8081))
vec255 = mm_set1_epi32(cast[int32](uint32.high))
vecZero = mm_setzero_si128()
colorVecEven = mm_slli_epi16(colorVec, 8)
colorVecOdd = mm_and_si128(colorVec, oddMask)
iterations = result.data.len div 16
for _ in 0 ..< iterations:
var coverageVec = mm_loadu_si128(mask.data[i].addr)
if mm_movemask_epi8(mm_cmpeq_epi16(coverageVec, vecZero)) != 0xffff:
if mm_movemask_epi8(mm_cmpeq_epi32(coverageVec, vec255)) == 0xffff:
for q in [0, 4, 8, 12]:
mm_storeu_si128(result.data[i + q].addr, colorVec)
else:
for q in [0, 4, 8, 12]:
var unpacked = unpackAlphaValues(coverageVec)
# Shift the coverages from `a` to `g` and `a` for multiplying
unpacked = mm_or_si128(unpacked, mm_srli_epi32(unpacked, 16))
var
sourceEven = mm_mulhi_epu16(colorVecEven, unpacked)
sourceOdd = mm_mulhi_epu16(colorVecOdd, unpacked)
sourceEven = mm_srli_epi16(mm_mulhi_epu16(sourceEven, div255), 7)
sourceOdd = mm_srli_epi16(mm_mulhi_epu16(sourceOdd, div255), 7)
mm_storeu_si128(
result.data[i + q].addr,
mm_or_si128(sourceEven, mm_slli_epi16(sourceOdd, 8))
)
coverageVec = mm_srli_si128(coverageVec, 4)
i += 16
let channels = [rgbx.r.uint32, rgbx.g.uint32, rgbx.b.uint32, rgbx.a.uint32]
for i in i ..< result.data.len:
let coverage = mask.data[i]
if coverage == 255:
result.data[i] = rgbx
elif coverage != 0:
result.data[i].r = ((channels[0] * coverage) div 255).uint8
result.data[i].g = ((channels[1] * coverage) div 255).uint8
result.data[i].b = ((channels[2] * coverage) div 255).uint8
result.data[i].a = ((channels[3] * coverage) div 255).uint8
proc fillImage*(
path: SomePath, width, height: int, color: SomeColor, windingRule = wrNonZero
): Image =
## Returns a new image with the path filled. This is a faster alternative
## to `newImage` + `fillPath`.
let shapes = parseSomePath(path, false, 1)
shapes.fillImage(width, height, color, windingRule)
proc strokeMask*(
path: SomePath,
width, height: int,
strokeWidth: float32 = 1.0,
lineCap = lcButt,
lineJoin = ljMiter,
miterLimit = defaultMiterLimit,
dashes: seq[float32] = @[]
): Mask =
## Returns a new mask with the path stroked. This is a faster alternative
## to `newImage` + `strokePath`.
let strokeShapes = strokeShapes(
parseSomePath(path, false, 1),
strokeWidth,
lineCap,
lineJoin,
miterLimit,
dashes,
1
)
result = strokeShapes.fillMask(width, height, wrNonZero)
proc strokeImage*(
path: SomePath,
width, height: int,
color: SomeColor,
strokeWidth: float32 = 1.0,
lineCap = lcButt,
lineJoin = ljMiter,
miterLimit = defaultMiterLimit,
dashes: seq[float32] = @[]
): Image =
## Returns a new image with the path stroked. This is a faster alternative
## to `newImage` + `strokePath`.
let strokeShapes = strokeShapes(
parseSomePath(path, false, 1),
strokeWidth,
lineCap,
lineJoin,
miterLimit,
dashes,
1
)
result = strokeShapes.fillImage(width, height, color, wrNonZero)
when defined(release):
{.pop.}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

View file

@ -131,16 +131,6 @@ block:
)
image.writeFile("tests/paths/pathHeart.png")
block:
let image = """
M 10,30
A 20,20 0,0,1 50,30
A 20,20 0,0,1 90,30
Q 90,60 50,90
Q 10,60 10,30 z
""".fillImage(100, 100, parseHtmlColor("#FC427B").rgba)
image.writeFile("tests/paths/pathHeart2.png")
block:
let image = newImage(100, 100)
image.fillPath(