From 2e163e6e6c8598f0839c3cb852a947449fde6baa Mon Sep 17 00:00:00 2001 From: Ryan Oldenburg Date: Sun, 12 Dec 2021 18:15:05 -0600 Subject: [PATCH] move pixieSweeps --- experiments/sweeps4.nim | 426 +++++++++++++++++++++++++++++++ src/pixie/paths.nim | 539 ++++------------------------------------ 2 files changed, 479 insertions(+), 486 deletions(-) create mode 100644 experiments/sweeps4.nim diff --git a/experiments/sweeps4.nim b/experiments/sweeps4.nim new file mode 100644 index 0000000..6603843 --- /dev/null +++ b/experiments/sweeps4.nim @@ -0,0 +1,426 @@ + +when defined(pixieSweeps): + import algorithm + + proc pixelCover(a0, b0: Vec2): float32 = + ## Returns the amount of area a given segment sweeps to the right + ## in a [0,0 to 1,1] box. + var + a = a0 + b = b0 + aI: Vec2 + bI: Vec2 + area: float32 = 0.0 + + if (a.x < 0 and b.x < 0) or # Both to the left. + (a.x == b.x): # Vertical line + # Area of the rectangle: + return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0)) + + else: + # y = mm*x + bb + let + mm: float32 = (b.y - a.y) / (b.x - a.x) + bb: float32 = a.y - mm * a.x + + if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1: + # A is in pixel bounds. + aI = a + else: + aI = vec2((0 - bb) / mm, 0) + if aI.x < 0: + let y = mm * 0 + bb + # Area of the extra rectangle. + area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1) + aI = vec2(0, y.clamp(0, 1)) + elif aI.x > 1: + let y = mm * 1 + bb + aI = vec2(1, y.clamp(0, 1)) + + if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1: + # B is in pixel bounds. + bI = b + else: + bI = vec2((1 - bb) / mm, 1) + if bI.x < 0: + let y = mm * 0 + bb + # Area of the extra rectangle. + area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1) + bI = vec2(0, y.clamp(0, 1)) + elif bI.x > 1: + let y = mm * 1 + bb + bI = vec2(1, y.clamp(0, 1)) + + area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y) + return area + + proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} = + ## Checks if the a segment intersects b segment. + ## If it returns true, at will have point of intersection + let + s1 = a.to - a.at + s2 = b.to - b.at + denominator = (-s2.x * s1.y + s1.x * s2.y) + s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator + t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator + + if s > 0 and s < 1 and t > 0 and t < 1: + at = a.at + (t * s1) + return true + + type + + Trapezoid = object + nw, ne, se, sw: Vec2 + + SweepLine = object + #m, x, b: float32 + atx, tox: float32 + winding: int16 + + proc toLine(s: (Segment, int16)): SweepLine = + var line = SweepLine() + line.atx = s[0].at.x + line.tox = s[0].to.x + # y = mx + b + # line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x) + # line.b = s.at.y - line.m * s.at.x + line.winding = s[1] + return line + + proc intersectsYLine( + y: float32, s: Segment, atx: var float32 + ): bool {.inline.} = + let + s2y = s.to.y - s.at.y + denominator = -s2y + numerator = s.at.y - y + u = numerator / denominator + if u >= 0 and u <= 1: + let at = s.at + (u * vec2(s.to.x - s.at.x, s2y)) + atx = at.x + return true + + proc binaryInsert(arr: var seq[float32], v: float32) = + if arr.len == 0: + arr.add(v) + return + var + L = 0 + R = arr.len - 1 + while L < R: + let m = (L + R) div 2 + if arr[m] ~= v: + return + elif arr[m] < v: + L = m + 1 + else: # arr[m] > v: + R = m - 1 + if arr[L] ~= v: + return + elif arr[L] > v: + arr.insert(v, L) + else: + arr.insert(v, L + 1) + + proc sortSegments(segments: var seq[(Segment, int16)], inl, inr: int) = + ## Quicksort + insertion sort, in-place and faster than standard lib sort. + + let n = inr - inl + 1 + if n < 32: # Use insertion sort for the rest + for i in inl + 1 .. inr: + var + j = i - 1 + k = i + while j >= 0 and segments[j][0].at.y > segments[k][0].at.y: + swap(segments[j + 1], segments[j]) + dec j + dec k + return + var + l = inl + r = inr + let p = segments[l + n div 2][0].at.y + while l <= r: + if segments[l][0].at.y < p: + inc l + elif segments[r][0].at.y > p: + dec r + else: + swap(segments[l], segments[r]) + inc l + dec r + sortSegments(segments, inl, r) + sortSegments(segments, l, inr) + + proc sortSweepLines(segments: var seq[SweepLine], inl, inr: int) = + ## Quicksort + insertion sort, in-place and faster than standard lib sort. + + proc avg(line: SweepLine): float32 {.inline.} = + (line.tox + line.atx) / 2.float32 + + let n = inr - inl + 1 + if n < 32: # Use insertion sort for the rest + for i in inl + 1 .. inr: + var + j = i - 1 + k = i + while j >= 0 and segments[j].avg > segments[k].avg: + swap(segments[j + 1], segments[j]) + dec j + dec k + return + var + l = inl + r = inr + let p = segments[l + n div 2].avg + while l <= r: + if segments[l].avg < p: + inc l + elif segments[r].avg > p: + dec r + else: + swap(segments[l], segments[r]) + inc l + dec r + sortSweepLines(segments, inl, r) + sortSweepLines(segments, l, inr) + + proc fillShapes( + image: Image, + shapes: seq[seq[Vec2]], + color: SomeColor, + windingRule: WindingRule, + blendMode: BlendMode + ) = + + let rgbx = color.rgbx + var segments = shapes.shapesToSegments() + let + bounds = computeBounds(segments).snapToPixels() + startX = max(0, bounds.x.int) + + if segments.len == 0 or bounds.w.int == 0 or bounds.h.int == 0: + return + + # const q = 1/10 + # for i in 0 ..< segments.len: + # segments[i][0].at.x = quantize(segments[i][0].at.x, q) + # segments[i][0].at.y = quantize(segments[i][0].at.y, q) + # segments[i][0].to.x = quantize(segments[i][0].to.x, q) + # segments[i][0].to.y = quantize(segments[i][0].to.y, q) + + # Create sorted segments. + segments.sortSegments(0, segments.high) + + # Compute cut lines + var cutLines: seq[float32] + for s in segments: + cutLines.binaryInsert(s[0].at.y) + cutLines.binaryInsert(s[0].to.y) + + var + # Dont add bottom cutLine. + sweeps = newSeq[seq[SweepLine]](cutLines.len - 1) + lastSeg = 0 + i = 0 + while i < sweeps.len: + + if lastSeg < segments.len: + + while segments[lastSeg][0].at.y == cutLines[i]: + let s = segments[lastSeg] + + if s[0].to.y != cutLines[i + 1]: + var atx: float32 + var seg = s[0] + for j in i ..< sweeps.len: + let y = cutLines[j + 1] + if intersectsYLine(y, seg, atx): + sweeps[j].add(toLine((segment(seg.at, vec2(atx, y)), s[1]))) + seg = segment(vec2(atx, y), seg.to) + else: + if seg.at.y != seg.to.y: + sweeps[j].add(toLine(s)) + break + else: + sweeps[i].add(toLine(s)) + + inc lastSeg + if lastSeg >= segments.len: + break + inc i + + # i = 0 + # while i < sweeps.len: + # # TODO: Maybe finds all cuts first, add them to array, cut all lines at once. + # var crossCuts: seq[float32] + + # # echo i, " cut?" + + # for aIndex in 0 ..< sweeps[i].len: + # let a = sweeps[i][aIndex] + # # echo i, ":", sweeps.len, ":", cutLines.len + # let aSeg = segment(vec2(a.atx, cutLines[i]), vec2(a.tox, cutLines[i+1])) + # for bIndex in aIndex + 1 ..< sweeps[i].len: + # let b = sweeps[i][bIndex] + # let bSeg = segment(vec2(b.atx, cutLines[i]), vec2(b.tox, cutLines[i+1])) + # var at: Vec2 + # if intersectsInner(aSeg, bSeg, at): + # crossCuts.binaryInsert(at.y) + + # if crossCuts.len > 0: + # var + # thisSweep = sweeps[i] + # yTop = cutLines[i] + # yBottom = cutLines[i + 1] + # sweeps[i].setLen(0) + + # for k in crossCuts: + # let prevLen = cutLines.len + # cutLines.binaryInsert(k) + # if prevLen != cutLines.len: + # sweeps.insert(newSeq[SweepLine](), i + 1) + + # for a in thisSweep: + # var seg = segment(vec2(a.atx, yTop), vec2(a.tox, yBottom)) + # var at: Vec2 + # for j, cutterLine in crossCuts: + # if intersects(line(vec2(0, cutterLine), vec2(1, cutterLine)), seg, at): + # sweeps[i+j].add(toLine((segment(seg.at, at), a.winding))) + # seg = segment(at, seg.to) + # sweeps[i+crossCuts.len].add(toLine((seg, a.winding))) + + # i += crossCuts.len + + # inc i + + i = 0 + while i < sweeps.len: + # Sort the sweep by X + sweeps[i].sortSweepLines(0, sweeps[i].high) + # Do winding order + var + pen = 0 + prevFill = false + j = 0 + while j < sweeps[i].len: + let a = sweeps[i][j] + if a.winding == 1: + inc pen + if a.winding == -1: + dec pen + let thisFill = shouldFill(windingRule, pen) + if prevFill == thisFill: + # Remove this sweep line. + sweeps[i].delete(j) + continue + prevFill = thisFill + inc j + inc i + + # Used to debug sweeps: + # for s in 0 ..< sweeps.len: + # let + # y1 = cutLines[s] + # echo "M -100 ", y1 + # echo "L 300 ", y1 + # for line in sweeps[s]: + # let + # nw = vec2(line.atx, cutLines[s]) + # sw = vec2(line.tox, cutLines[s + 1]) + # echo "M ", nw.x, " ", nw.y + # echo "L ", sw.x, " ", sw.y + + proc computeCoverage( + coverages: var seq[uint16], + y: int, + startX: int, + cutLines: seq[float32], + currCutLine: int, + sweep: seq[SweepLine] + ) = + + if cutLines[currCutLine + 1] - cutLines[currCutLine] < 1/256: + # TODO some thing about micro sweeps + return + + let + sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] + yFracTop = ((y.float32 - cutLines[currCutLine]) / sweepHeight).clamp(0, 1) + yFracBottom = ((y.float32 + 1 - cutLines[currCutLine]) / + sweepHeight).clamp(0, 1) + var i = 0 + while i < sweep.len: + let + nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop) + neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop) + + swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom) + seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom) + + minWi = min(nwX, swX).int #.clamp(startX, coverages.len + startX) + maxWi = max(nwX, swX).ceil.int #.clamp(startX, coverages.len + startX) + + minEi = min(neX, seX).int #.clamp(startX, coverages.len + startX) + maxEi = max(neX, seX).ceil.int #.clamp(startX, coverages.len + startX) + + let + nw = vec2(sweep[i+0].atx, cutLines[currCutLine]) + sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1]) + f16 = (256 * 256 - 1).float32 + for x in minWi ..< maxWi: + var area = pixelCover( + nw - vec2(x.float32, y.float32), + sw - vec2(x.float32, y.float32) + ) + coverages[x - startX] += (area * f16).uint16 + + let x = maxWi + var midArea = pixelCover( + nw - vec2(x.float32, y.float32), + sw - vec2(x.float32, y.float32) + ) + for x in maxWi ..< maxEi: + coverages[x - startX] += (midArea * f16).uint16 + + let + ne = vec2(sweep[i+1].atx, cutLines[currCutLine]) + se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1]) + for x in minEi ..< maxEi: + var area = pixelCover( + ne - vec2(x.float32, y.float32), + se - vec2(x.float32, y.float32) + ) + coverages[x - startX] -= (area * f16).uint16 + + i += 2 + + var + currCutLine = 0 + coverages16 = newSeq[uint16](bounds.w.int) + coverages8 = newSeq[uint8](bounds.w.int) + for scanLine in max(cutLines[0].int, 0) ..< min(cutLines[^1].ceil.int, image.height): + + zeroMem(coverages16[0].addr, coverages16.len * 2) + + coverages16.computeCoverage( + scanLine, startX, cutLines, currCutLine, sweeps[currCutLine]) + while cutLines[currCutLine + 1] < scanLine.float + 1.0: + inc currCutLine + if currCutLine == sweeps.len: + break + coverages16.computeCoverage( + scanLine, startX, cutLines, currCutLine, sweeps[currCutLine]) + + for i in 0 ..< coverages16.len: + coverages8[i] = (coverages16[i] shr 8).uint8 + image.fillCoverage( + rgbx, + startX = startX, + y = scanLine, + coverages8, + blendMode + ) + +else: diff --git a/src/pixie/paths.nim b/src/pixie/paths.nim index 71fbc14..4e655cd 100644 --- a/src/pixie/paths.nim +++ b/src/pixie/paths.nim @@ -1580,7 +1580,59 @@ proc fillShapes( color: SomeColor, windingRule: WindingRule, blendMode: BlendMode -) +) = + # Figure out the total bounds of all the shapes, + # rasterize only within the total bounds + let + rgbx = color.asRgbx() + segments = shapes.shapesToSegments() + bounds = computeBounds(segments).snapToPixels() + startX = max(0, bounds.x.int) + startY = max(0, bounds.y.int) + pathHeight = min(image.height, (bounds.y + bounds.h).int) + partitioning = partitionSegments(segments, startY, pathHeight - startY) + + var + coverages = newSeq[uint8](bounds.w.int) + hits = newSeq[(float32, int16)](partitioning.maxEntryCount) + numHits: int + aa: bool + + for y in startY ..< pathHeight: + computeCoverage( + cast[ptr UncheckedArray[uint8]](coverages[0].addr), + hits, + numHits, + aa, + image.width.float32, + y, + startX, + partitioning, + windingRule + ) + if aa: + image.fillCoverage( + rgbx, + startX, + y, + coverages, + blendMode + ) + zeroMem(coverages[0].addr, coverages.len) + else: + image.fillHits( + rgbx, + startX, + y, + hits, + numHits, + windingRule, + blendMode + ) + + if blendMode == bmMask: + image.clearUnsafe(0, 0, 0, startY) + image.clearUnsafe(0, pathHeight, 0, image.height) proc fillShapes( mask: Mask, @@ -2017,491 +2069,6 @@ proc strokeOverlaps*( strokeShapes.transform(transform) strokeShapes.overlaps(test, wrNonZero) -when defined(pixieSweeps): - import algorithm - - proc pixelCover(a0, b0: Vec2): float32 = - ## Returns the amount of area a given segment sweeps to the right - ## in a [0,0 to 1,1] box. - var - a = a0 - b = b0 - aI: Vec2 - bI: Vec2 - area: float32 = 0.0 - - if (a.x < 0 and b.x < 0) or # Both to the left. - (a.x == b.x): # Vertical line - # Area of the rectangle: - return (1 - clamp(a.x, 0, 1)) * (min(b.y, 1) - max(a.y, 0)) - - else: - # y = mm*x + bb - let - mm: float32 = (b.y - a.y) / (b.x - a.x) - bb: float32 = a.y - mm * a.x - - if a.x >= 0 and a.x <= 1 and a.y >= 0 and a.y <= 1: - # A is in pixel bounds. - aI = a - else: - aI = vec2((0 - bb) / mm, 0) - if aI.x < 0: - let y = mm * 0 + bb - # Area of the extra rectangle. - area += (min(bb, 1) - max(a.y, 0)).clamp(0, 1) - aI = vec2(0, y.clamp(0, 1)) - elif aI.x > 1: - let y = mm * 1 + bb - aI = vec2(1, y.clamp(0, 1)) - - if b.x >= 0 and b.x <= 1 and b.y >= 0 and b.y <= 1: - # B is in pixel bounds. - bI = b - else: - bI = vec2((1 - bb) / mm, 1) - if bI.x < 0: - let y = mm * 0 + bb - # Area of the extra rectangle. - area += (min(b.y, 1) - max(bb, 0)).clamp(0, 1) - bI = vec2(0, y.clamp(0, 1)) - elif bI.x > 1: - let y = mm * 1 + bb - bI = vec2(1, y.clamp(0, 1)) - - area += ((1 - aI.x) + (1 - bI.x)) / 2 * (bI.y - aI.y) - return area - - proc intersectsInner*(a, b: Segment, at: var Vec2): bool {.inline.} = - ## Checks if the a segment intersects b segment. - ## If it returns true, at will have point of intersection - let - s1 = a.to - a.at - s2 = b.to - b.at - denominator = (-s2.x * s1.y + s1.x * s2.y) - s = (-s1.y * (a.at.x - b.at.x) + s1.x * (a.at.y - b.at.y)) / denominator - t = (s2.x * (a.at.y - b.at.y) - s2.y * (a.at.x - b.at.x)) / denominator - - if s > 0 and s < 1 and t > 0 and t < 1: - at = a.at + (t * s1) - return true - - type - - Trapezoid = object - nw, ne, se, sw: Vec2 - - SweepLine = object - #m, x, b: float32 - atx, tox: float32 - winding: int16 - - proc toLine(s: (Segment, int16)): SweepLine = - var line = SweepLine() - line.atx = s[0].at.x - line.tox = s[0].to.x - # y = mx + b - # line.m = (s.at.y - s.to.y) / (s.at.x - s.to.x) - # line.b = s.at.y - line.m * s.at.x - line.winding = s[1] - return line - - proc intersectsYLine( - y: float32, s: Segment, atx: var float32 - ): bool {.inline.} = - let - s2y = s.to.y - s.at.y - denominator = -s2y - numerator = s.at.y - y - u = numerator / denominator - if u >= 0 and u <= 1: - let at = s.at + (u * vec2(s.to.x - s.at.x, s2y)) - atx = at.x - return true - - proc binaryInsert(arr: var seq[float32], v: float32) = - if arr.len == 0: - arr.add(v) - return - var - L = 0 - R = arr.len - 1 - while L < R: - let m = (L + R) div 2 - if arr[m] ~= v: - return - elif arr[m] < v: - L = m + 1 - else: # arr[m] > v: - R = m - 1 - if arr[L] ~= v: - return - elif arr[L] > v: - arr.insert(v, L) - else: - arr.insert(v, L + 1) - - proc sortSegments(segments: var seq[(Segment, int16)], inl, inr: int) = - ## Quicksort + insertion sort, in-place and faster than standard lib sort. - - let n = inr - inl + 1 - if n < 32: # Use insertion sort for the rest - for i in inl + 1 .. inr: - var - j = i - 1 - k = i - while j >= 0 and segments[j][0].at.y > segments[k][0].at.y: - swap(segments[j + 1], segments[j]) - dec j - dec k - return - var - l = inl - r = inr - let p = segments[l + n div 2][0].at.y - while l <= r: - if segments[l][0].at.y < p: - inc l - elif segments[r][0].at.y > p: - dec r - else: - swap(segments[l], segments[r]) - inc l - dec r - sortSegments(segments, inl, r) - sortSegments(segments, l, inr) - - proc sortSweepLines(segments: var seq[SweepLine], inl, inr: int) = - ## Quicksort + insertion sort, in-place and faster than standard lib sort. - - proc avg(line: SweepLine): float32 {.inline.} = - (line.tox + line.atx) / 2.float32 - - let n = inr - inl + 1 - if n < 32: # Use insertion sort for the rest - for i in inl + 1 .. inr: - var - j = i - 1 - k = i - while j >= 0 and segments[j].avg > segments[k].avg: - swap(segments[j + 1], segments[j]) - dec j - dec k - return - var - l = inl - r = inr - let p = segments[l + n div 2].avg - while l <= r: - if segments[l].avg < p: - inc l - elif segments[r].avg > p: - dec r - else: - swap(segments[l], segments[r]) - inc l - dec r - sortSweepLines(segments, inl, r) - sortSweepLines(segments, l, inr) - - proc fillShapes( - image: Image, - shapes: seq[seq[Vec2]], - color: SomeColor, - windingRule: WindingRule, - blendMode: BlendMode - ) = - - let rgbx = color.rgbx - var segments = shapes.shapesToSegments() - let - bounds = computeBounds(segments).snapToPixels() - startX = max(0, bounds.x.int) - - if segments.len == 0 or bounds.w.int == 0 or bounds.h.int == 0: - return - - # const q = 1/10 - # for i in 0 ..< segments.len: - # segments[i][0].at.x = quantize(segments[i][0].at.x, q) - # segments[i][0].at.y = quantize(segments[i][0].at.y, q) - # segments[i][0].to.x = quantize(segments[i][0].to.x, q) - # segments[i][0].to.y = quantize(segments[i][0].to.y, q) - - # Create sorted segments. - segments.sortSegments(0, segments.high) - - # Compute cut lines - var cutLines: seq[float32] - for s in segments: - cutLines.binaryInsert(s[0].at.y) - cutLines.binaryInsert(s[0].to.y) - - var - # Dont add bottom cutLine. - sweeps = newSeq[seq[SweepLine]](cutLines.len - 1) - lastSeg = 0 - i = 0 - while i < sweeps.len: - - if lastSeg < segments.len: - - while segments[lastSeg][0].at.y == cutLines[i]: - let s = segments[lastSeg] - - if s[0].to.y != cutLines[i + 1]: - var atx: float32 - var seg = s[0] - for j in i ..< sweeps.len: - let y = cutLines[j + 1] - if intersectsYLine(y, seg, atx): - sweeps[j].add(toLine((segment(seg.at, vec2(atx, y)), s[1]))) - seg = segment(vec2(atx, y), seg.to) - else: - if seg.at.y != seg.to.y: - sweeps[j].add(toLine(s)) - break - else: - sweeps[i].add(toLine(s)) - - inc lastSeg - if lastSeg >= segments.len: - break - inc i - - # i = 0 - # while i < sweeps.len: - # # TODO: Maybe finds all cuts first, add them to array, cut all lines at once. - # var crossCuts: seq[float32] - - # # echo i, " cut?" - - # for aIndex in 0 ..< sweeps[i].len: - # let a = sweeps[i][aIndex] - # # echo i, ":", sweeps.len, ":", cutLines.len - # let aSeg = segment(vec2(a.atx, cutLines[i]), vec2(a.tox, cutLines[i+1])) - # for bIndex in aIndex + 1 ..< sweeps[i].len: - # let b = sweeps[i][bIndex] - # let bSeg = segment(vec2(b.atx, cutLines[i]), vec2(b.tox, cutLines[i+1])) - # var at: Vec2 - # if intersectsInner(aSeg, bSeg, at): - # crossCuts.binaryInsert(at.y) - - # if crossCuts.len > 0: - # var - # thisSweep = sweeps[i] - # yTop = cutLines[i] - # yBottom = cutLines[i + 1] - # sweeps[i].setLen(0) - - # for k in crossCuts: - # let prevLen = cutLines.len - # cutLines.binaryInsert(k) - # if prevLen != cutLines.len: - # sweeps.insert(newSeq[SweepLine](), i + 1) - - # for a in thisSweep: - # var seg = segment(vec2(a.atx, yTop), vec2(a.tox, yBottom)) - # var at: Vec2 - # for j, cutterLine in crossCuts: - # if intersects(line(vec2(0, cutterLine), vec2(1, cutterLine)), seg, at): - # sweeps[i+j].add(toLine((segment(seg.at, at), a.winding))) - # seg = segment(at, seg.to) - # sweeps[i+crossCuts.len].add(toLine((seg, a.winding))) - - # i += crossCuts.len - - # inc i - - i = 0 - while i < sweeps.len: - # Sort the sweep by X - sweeps[i].sortSweepLines(0, sweeps[i].high) - # Do winding order - var - pen = 0 - prevFill = false - j = 0 - while j < sweeps[i].len: - let a = sweeps[i][j] - if a.winding == 1: - inc pen - if a.winding == -1: - dec pen - let thisFill = shouldFill(windingRule, pen) - if prevFill == thisFill: - # Remove this sweep line. - sweeps[i].delete(j) - continue - prevFill = thisFill - inc j - inc i - - # Used to debug sweeps: - # for s in 0 ..< sweeps.len: - # let - # y1 = cutLines[s] - # echo "M -100 ", y1 - # echo "L 300 ", y1 - # for line in sweeps[s]: - # let - # nw = vec2(line.atx, cutLines[s]) - # sw = vec2(line.tox, cutLines[s + 1]) - # echo "M ", nw.x, " ", nw.y - # echo "L ", sw.x, " ", sw.y - - proc computeCoverage( - coverages: var seq[uint16], - y: int, - startX: int, - cutLines: seq[float32], - currCutLine: int, - sweep: seq[SweepLine] - ) = - - if cutLines[currCutLine + 1] - cutLines[currCutLine] < 1/256: - # TODO some thing about micro sweeps - return - - let - sweepHeight = cutLines[currCutLine + 1] - cutLines[currCutLine] - yFracTop = ((y.float32 - cutLines[currCutLine]) / sweepHeight).clamp(0, 1) - yFracBottom = ((y.float32 + 1 - cutLines[currCutLine]) / - sweepHeight).clamp(0, 1) - var i = 0 - while i < sweep.len: - let - nwX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracTop) - neX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracTop) - - swX = mix(sweep[i+0].atx, sweep[i+0].tox, yFracBottom) - seX = mix(sweep[i+1].atx, sweep[i+1].tox, yFracBottom) - - minWi = min(nwX, swX).int #.clamp(startX, coverages.len + startX) - maxWi = max(nwX, swX).ceil.int #.clamp(startX, coverages.len + startX) - - minEi = min(neX, seX).int #.clamp(startX, coverages.len + startX) - maxEi = max(neX, seX).ceil.int #.clamp(startX, coverages.len + startX) - - let - nw = vec2(sweep[i+0].atx, cutLines[currCutLine]) - sw = vec2(sweep[i+0].tox, cutLines[currCutLine + 1]) - f16 = (256 * 256 - 1).float32 - for x in minWi ..< maxWi: - var area = pixelCover( - nw - vec2(x.float32, y.float32), - sw - vec2(x.float32, y.float32) - ) - coverages[x - startX] += (area * f16).uint16 - - let x = maxWi - var midArea = pixelCover( - nw - vec2(x.float32, y.float32), - sw - vec2(x.float32, y.float32) - ) - for x in maxWi ..< maxEi: - coverages[x - startX] += (midArea * f16).uint16 - - let - ne = vec2(sweep[i+1].atx, cutLines[currCutLine]) - se = vec2(sweep[i+1].tox, cutLines[currCutLine + 1]) - for x in minEi ..< maxEi: - var area = pixelCover( - ne - vec2(x.float32, y.float32), - se - vec2(x.float32, y.float32) - ) - coverages[x - startX] -= (area * f16).uint16 - - i += 2 - - var - currCutLine = 0 - coverages16 = newSeq[uint16](bounds.w.int) - coverages8 = newSeq[uint8](bounds.w.int) - for scanLine in max(cutLines[0].int, 0) ..< min(cutLines[^1].ceil.int, image.height): - - zeroMem(coverages16[0].addr, coverages16.len * 2) - - coverages16.computeCoverage( - scanLine, startX, cutLines, currCutLine, sweeps[currCutLine]) - while cutLines[currCutLine + 1] < scanLine.float + 1.0: - inc currCutLine - if currCutLine == sweeps.len: - break - coverages16.computeCoverage( - scanLine, startX, cutLines, currCutLine, sweeps[currCutLine]) - - for i in 0 ..< coverages16.len: - coverages8[i] = (coverages16[i] shr 8).uint8 - image.fillCoverage( - rgbx, - startX = startX, - y = scanLine, - coverages8, - blendMode - ) - -else: - proc fillShapes( - image: Image, - shapes: seq[seq[Vec2]], - color: SomeColor, - windingRule: WindingRule, - blendMode: BlendMode - ) = - # Figure out the total bounds of all the shapes, - # rasterize only within the total bounds - let - rgbx = color.asRgbx() - segments = shapes.shapesToSegments() - bounds = computeBounds(segments).snapToPixels() - startX = max(0, bounds.x.int) - startY = max(0, bounds.y.int) - pathHeight = min(image.height, (bounds.y + bounds.h).int) - partitioning = partitionSegments(segments, startY, pathHeight - startY) - - var - coverages = newSeq[uint8](bounds.w.int) - hits = newSeq[(float32, int16)](partitioning.maxEntryCount) - numHits: int - aa: bool - - for y in startY ..< pathHeight: - computeCoverage( - cast[ptr UncheckedArray[uint8]](coverages[0].addr), - hits, - numHits, - aa, - image.width.float32, - y, - startX, - partitioning, - windingRule - ) - if aa: - image.fillCoverage( - rgbx, - startX, - y, - coverages, - blendMode - ) - zeroMem(coverages[0].addr, coverages.len) - else: - image.fillHits( - rgbx, - startX, - y, - hits, - numHits, - windingRule, - blendMode - ) - - if blendMode == bmMask: - image.clearUnsafe(0, 0, 0, startY) - image.clearUnsafe(0, pathHeight, 0, image.height) - proc fillMask( shapes: seq[seq[Vec2]], width, height: int, windingRule = wrNonZero ): Mask =