310 lines
12 KiB
Nim
310 lines
12 KiB
Nim
|
|
## SliceMem is a general purpose array that can be casted to any type, and does
|
|
## not create copies when assigned multiple times, like a reference type, unless
|
|
## you use `copy`. It can be created by itself, from another container such as
|
|
## a seq (without copying when possible), or from a pointer and a custom
|
|
## destructor.
|
|
##
|
|
## It's called "SliceMem" because "MemSlice" is taken by std/memfiles.
|
|
|
|
import std/strformat
|
|
import std/hashes
|
|
import std/macros # for noMove()
|
|
|
|
type
|
|
SliceMem*[T] = object
|
|
data*: ptr UncheckedArray[T]
|
|
byte_len*: int
|
|
destroy_ref: ref CustomDestructor
|
|
|
|
CustomDestructor = object
|
|
destroy: proc() {.closure, raises: [].}
|
|
|
|
proc `=destroy`(s: var CustomDestructor) =
|
|
if s.destroy != nil:
|
|
s.destroy()
|
|
s.destroy = nil
|
|
|
|
template toInt(p: pointer): int = cast[int](p)
|
|
# template toPointer(i: int): pointer = cast[pointer](p)
|
|
|
|
template toPointer*(s: SliceMem): pointer =
|
|
s.data.pointer
|
|
|
|
proc newSliceMem*[T, U](container: sink U; p: pointer, byte_len: int): SliceMem[T] =
|
|
## Create a SliceMem from a container, a pointer, and a length in bytes.
|
|
runnableExamples:
|
|
let x = @[1,2,3,4,5]
|
|
let s = newSliceMem(x, x[0].addr, x.len * sizeof(x[0]))
|
|
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](p),
|
|
byte_len: byte_len,
|
|
destroy_ref: (ref CustomDestructor)(destroy: proc()=
|
|
# we don't actually need to destroy the container here, destroying
|
|
# the closure will do it for us. Calling it allows us to use custom
|
|
# destructors though.
|
|
discard container
|
|
),
|
|
)
|
|
|
|
proc newSliceMem*[T](p: ptr T, byte_len: int, destructor: proc() {.closure, raises: [].}): SliceMem[T] =
|
|
## Create a SliceMem from a pointer to a type, a length in bytes, and a
|
|
## destructor closure.
|
|
runnableExamples:
|
|
let x = createShared(int, 5)
|
|
proc destroy() = deallocShared(x)
|
|
let s = newSliceMem(x, 5, destroy)
|
|
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](p),
|
|
byte_len: byte_len,
|
|
destroy_ref: (ref CustomDestructor)(destroy: destructor),
|
|
)
|
|
|
|
proc newSliceMem*(p: pointer, byte_len: int, destructor: proc() {.closure, raises: [].}): SliceMem[byte] {.inline.} =
|
|
## Create a SliceMem from a pointer without type, a length in bytes, and a
|
|
## destructor closure. Same as newSliceMem[T](...) but assumes type is byte.
|
|
newSliceMem(cast[ptr byte](p), byte_len, destructor)
|
|
|
|
template newSliceMem*(container: not pointer, p, byte_len: untyped): untyped =
|
|
## Template to automatically determine the type for `newSliceMem[T,U]`
|
|
newSliceMem[typeof(container.items)](container, p, byte_len)
|
|
|
|
proc newSliceMem*[T, U](container: sink U; first, last: pointer): SliceMem[T] =
|
|
## Create a SliceMem from a container and the two pointers of the first and
|
|
## last elements in the container. Usually you will want to use `toSliceMem`
|
|
## instead.
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](first),
|
|
byte_len: (last.toInt -% first.toInt) + sizeof(T),
|
|
destroy_ref: (ref CustomDestructor)(destroy: proc()=
|
|
discard container
|
|
),
|
|
)
|
|
|
|
proc newSliceMem*[T](size: int): SliceMem[T] =
|
|
## Create a SliceMem from new memory, similar to ArrRef[T].
|
|
var r: ref byte
|
|
unsafeNew(r, size * sizeof(T))
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](r),
|
|
byte_len: size * sizeof(T),
|
|
destroy_ref: (ref CustomDestructor)(destroy: proc()=
|
|
discard r
|
|
),
|
|
)
|
|
|
|
macro noMove(e: untyped): untyped =
|
|
# remove the "move" from an expression
|
|
if e.kind == nnkCommand and e[0].repr == "move": e[1]
|
|
else: e
|
|
|
|
template toSliceMem*(container, slice: untyped): untyped =
|
|
## Create a SliceMem from a container and a slice that indicates the range.
|
|
## The container needs to have `[]` and `items()` (like `seq`). If it doesn't
|
|
## you need to pass pointers directly to `newSliceMem` instead.
|
|
runnableExamples:
|
|
var x = @[1,2,3,4,5]
|
|
let a = x.toSliceMem(1..3)
|
|
let b = toSliceMem(move x, 1..3) # This also works, and ensures that
|
|
# the contents of x are not copied
|
|
{.line.}:
|
|
if slice.len != 0:
|
|
# TODO: check that with boundChecks:off it doesn't try to read the value
|
|
let first = noMove(container)[slice.a].addr
|
|
let last = noMove(container)[slice.b].addr
|
|
newSliceMem[typeof(noMove(container).items)](container, first, last)
|
|
else:
|
|
SliceMem[typeof(container.items)]()
|
|
|
|
template toSliceMem*(container): untyped =
|
|
## Create a SliceMem from a container, with all its contents. The container
|
|
## needs to have `[]` and `items()` (like `seq`). If it doesn't you need to
|
|
## pass pointers directly to `newSliceMem` instead.
|
|
runnableExamples:
|
|
var x = @[1,2,3,4,5]
|
|
let a = x.toSliceMem
|
|
let b = toSliceMem(move x) # This also works, and ensures that
|
|
# the contents of x are not copied
|
|
{.line.}:
|
|
let s = noMove(container).low .. noMove(container).high
|
|
when not compiles(container[s.a].addr):
|
|
# expression container[x] has no address because it's a literal,
|
|
# let's make it real
|
|
let c = container
|
|
toSliceMem(c, s)
|
|
else:
|
|
toSliceMem(container, s)
|
|
|
|
proc copy*[T](s: SliceMem[T]): SliceMem[T] =
|
|
## Creates a copy of a SliceMem that doesn't reference the original one.
|
|
result = newSliceMem[byte](s.byte_len).to(T)
|
|
copyMem(result.toPointer, s.toPointer, s.byte_len)
|
|
|
|
template len*[T](s: SliceMem[T]): Natural =
|
|
s.byte_len div sizeof(T)
|
|
|
|
template low*[T](s: SliceMem[T]): Natural = 0
|
|
|
|
template high*[T](s: SliceMem[T]): int = s.len - 1
|
|
|
|
proc `[]`*[T](s: SliceMem[T], i: Natural): var T {.inline.} =
|
|
when compileOption("rangechecks"):
|
|
if i >= s.len:
|
|
raise newException(RangeDefect, &"index out of range: {i} >= {s.len}")
|
|
s.data[i]
|
|
|
|
proc `[]=`*[T](s: SliceMem[T], i: Natural, v: T) {.inline.} =
|
|
when compileOption("rangechecks"):
|
|
if i >= s.len:
|
|
raise newException(RangeDefect, &"index out of range: {i} >= {s.len}")
|
|
s.data[i] = v
|
|
|
|
template `[]`*[T](s: SliceMem[T], i: BackwardsIndex): T =
|
|
s[s.len - i.int]
|
|
|
|
template `[]=`*[T](s: SliceMem[T], i: BackwardsIndex, v: T) =
|
|
s[s.len - i.int] = v
|
|
|
|
template `[]`*[T](s: SliceMem[T], i: BackwardsIndex): T =
|
|
s[s.len - i.int]
|
|
|
|
template `[]=`*[T](s: SliceMem[T], i: BackwardsIndex, v: T) =
|
|
s[s.len - i.int] = v
|
|
|
|
template `[]`*[T](a: SliceMem[T], s: Slice[int]): var SliceMem[T] =
|
|
toSliceMem(a, s)
|
|
|
|
iterator items*[T](s: SliceMem[T]): T =
|
|
for i in 0 ..< s.len:
|
|
yield s.data[i]
|
|
|
|
iterator pairs*[T](s: SliceMem[T]): tuple[key: int, val: T] =
|
|
for i in 0 ..< s.len:
|
|
yield (i, s.data[i])
|
|
|
|
iterator mitems*[T](s: SliceMem[T]): var T =
|
|
for i in 0 ..< s.len:
|
|
yield s.data[i]
|
|
|
|
iterator mpairs*[T](s: SliceMem[T]): tuple[key: int, val: var T] =
|
|
for i in 0 ..< s.len:
|
|
yield (i, s.data[i])
|
|
|
|
proc `$`*[T](s: SliceMem[T]): string =
|
|
result = "SliceMem(["
|
|
if s.byte_len != 0:
|
|
let hi = s.high
|
|
for i in 0 ..< hi:
|
|
result &= $s.data[i] & ", "
|
|
result &= $s.data[hi]
|
|
result &= "])"
|
|
|
|
proc hash*[T](s: SliceMem[T]): Hash =
|
|
# Make use of stdlib's murmur3
|
|
hash(cast[ptr UncheckedArray[byte]](s.data).toOpenArray(0, s.byte_len - 1))
|
|
|
|
template toOpenArray*(s: SliceMem): untyped =
|
|
s.data.toOpenArray(0, s.byte_len - 1)
|
|
|
|
template toOpenArrayByte*(s: SliceMem): untyped =
|
|
cast[ptr UncheckedArray[byte]](s.data).toOpenArray(0, s.byte_len - 1)
|
|
|
|
template to*[T](s: SliceMem, typ: typedesc[T]): SliceMem[T] =
|
|
## Cast the SliceMem from one type to another
|
|
cast[SliceMem[T]](s)
|
|
|
|
template to*[T](s: openArray[SliceMem], typ: typedesc[T]): seq[SliceMem[T]] =
|
|
## Cast a seq of SliceMems from one type to another
|
|
var s2 = newSeqOfCap[SliceMem[T]](s.len)
|
|
for slice in s:
|
|
s2.add cast[SliceMem[T]](slice)
|
|
s2
|
|
|
|
proc concat*[T](slices: varargs[SliceMem[T]]): SliceMem[T] =
|
|
## Concatenates a list of SliceMems into a single one. Contents are copied.
|
|
runnableExamples:
|
|
let a = @[1,2,3,4,5].toSliceMem
|
|
let b = @[6,7,8,9,0].toSliceMem
|
|
var x = concat(a,b)
|
|
x = concat(a,b,a,a,b) # You can pass any amount of slices as arguments
|
|
x = concat(@[b,b,a,a]) # or you can pass a seq
|
|
var total = 0
|
|
for s in slices:
|
|
total += s.len
|
|
result = newSliceMem[T](total)
|
|
var offset = 0
|
|
for s in slices:
|
|
copyMem(result[offset].addr, s.data, s.len * sizeof(T))
|
|
offset += s.len
|
|
|
|
template `&`*[T,U](a: SliceMem[T], b: SliceMem[U]): SliceMem[T] =
|
|
## Concatenates two SliceMems (of any type) into a new one with the type of
|
|
## the first one.
|
|
concat(a, b.to(T))
|
|
|
|
proc serializeToSeq*[T](slices: openArray[SliceMem[T]], align = sizeof(int)): seq[SliceMem[byte]] =
|
|
## Converts a list of SliceMems into a format that can be saved to file and
|
|
## deserialized later. See `serialize` and `deserialize`. This proc returns a
|
|
## seq that is ready to concatenate or to write to a file.
|
|
let mask = align - 1
|
|
assert((align and mask) == 0, "Align must be a power of two")
|
|
var offset = 0
|
|
let align_count = newSliceMem[int32](2)
|
|
align_count[0] = align.int32
|
|
align_count[1] = slices.len.int32
|
|
result.add align_count.to(byte)
|
|
offset += align_count.byte_len
|
|
let lengths = newSliceMem[int64](slices.len)
|
|
result.add lengths.to(byte)
|
|
offset += lengths.byte_len
|
|
let pad_bytes = newSliceMem[byte](align)
|
|
for i,s in slices:
|
|
let pad = ((align-(offset and mask)) and mask)
|
|
if pad != 0:
|
|
result.add pad_bytes[0 ..< pad]
|
|
offset += pad
|
|
lengths[i] = s.byte_len
|
|
result.add s.to(byte)
|
|
offset += s.byte_len
|
|
|
|
proc serialize*[T](slices: openArray[SliceMem[T]], align = sizeof(int)): SliceMem[byte] =
|
|
## Converts a list of SliceMems into a single segment of memory that can be
|
|
## later deserialized into the separate SliceMems again. Use `deserialize`
|
|
## for the inverse process. Use `serializeToSeq` to obtain the separate
|
|
## formatted slices before they're concatenated and avoid copies.
|
|
runnableExamples:
|
|
let a = @[1,2,3,4,5].toSliceMem
|
|
let b = @[6,7,8,9,0].toSliceMem
|
|
let serialized = serialize(@[a,b])
|
|
let slices = serialized.to(int).deserialize
|
|
doAssert $slices == "@[SliceMem([1, 2, 3, 4, 5]), SliceMem([6, 7, 8, 9, 0])]"
|
|
concat(serializeToSeq(slices, align))
|
|
|
|
proc deserialize*[T](data: SliceMem[T]): seq[SliceMem[T]] =
|
|
## Reverts the process done by `serialize` except the conversion to byte.
|
|
## You can convert to the appropriate type before or after deserialization
|
|
## with `to` (see example in `serialize`)
|
|
let bytes = data.to(byte)
|
|
let i32 = data.to(int32)
|
|
let align = i32[0]
|
|
let count = i32[1]
|
|
let mask = align - 1
|
|
assert((align and mask) == 0, "Wrong format, align is invalid")
|
|
let lengths = bytes[8 ..< 8 + count*sizeof(int64)].to(int64)
|
|
var offset = 8 + lengths.byte_len
|
|
for i in 0 ..< count:
|
|
offset += ((align-(offset and mask)) and mask)
|
|
let len = lengths[i].int
|
|
result.add bytes[offset ..< offset+len].to(T)
|
|
offset += len
|
|
|
|
template toString*(s: SliceMem): string =
|
|
## Copies the contents of the SliceMem to a new string of the same length.
|
|
var str = newString(s.byte_len)
|
|
if s.byte_len != 0:
|
|
copyMem(str[0].addr, s.toPointer, s.byte_len)
|
|
str
|
|
|