203 lines
6.8 KiB
Nim
203 lines
6.8 KiB
Nim
|
|
## SliceMem represents a slice of memory, but it includes a reference to the
|
|
## original container (of any type) or even a custom destructor, so memory is
|
|
## properly freed when it's no longer in use.
|
|
##
|
|
## It's called "SliceMem" because "MemSlice" is taken by std/memfiles.
|
|
|
|
import std/strformat
|
|
import std/hashes
|
|
import std/macros
|
|
|
|
type
|
|
SliceMem*[T] = object
|
|
data*: ptr UncheckedArray[T]
|
|
byte_len*: int
|
|
destroy_ref: ref CustomDestructor
|
|
|
|
CustomDestructor = object
|
|
destroy: proc() {.closure, raises: [].}
|
|
|
|
proc `=destroy`(s: var CustomDestructor) =
|
|
if s.destroy != nil:
|
|
s.destroy()
|
|
s.destroy = nil
|
|
|
|
template toInt(p: pointer): int = cast[int](p)
|
|
# template toPointer(i: int): pointer = cast[pointer](p)
|
|
|
|
template toPointer*(s: SliceMem): pointer =
|
|
s.data.pointer
|
|
|
|
proc newSliceMem*[T, U](container: sink U; p: pointer, byte_len: int): SliceMem[T] =
|
|
## Create a SliceMem from a container, a pointer, and a length in bytes.
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](p),
|
|
byte_len: byte_len,
|
|
destroy_ref: (ref CustomDestructor)(destroy: proc()=
|
|
# we don't actually need to destroy the container here, destroying
|
|
# the closure will do it for us. Calling it allows us to use custom
|
|
# destructors though.
|
|
discard container
|
|
),
|
|
)
|
|
|
|
proc newSliceMem*[T](p: ptr T, byte_len: int, destructor: proc() {.closure, raises: [].}): SliceMem[T] =
|
|
## Create a SliceMem from a pointer to a type, a length in bytes, and a
|
|
## destructor closure.
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](p),
|
|
byte_len: byte_len,
|
|
destroy_ref: (ref CustomDestructor)(destroy: destructor),
|
|
)
|
|
|
|
proc newSliceMem*(p: pointer, byte_len: int, destructor: proc() {.closure, raises: [].}): SliceMem[byte] {.inline.} =
|
|
newSliceMem(cast[ptr byte](p), byte_len, destructor)
|
|
|
|
template newSliceMem*(container: not pointer, p, byte_len: untyped): untyped =
|
|
## Template to automatically determine the type for `newSliceMem[T,U]`
|
|
newSliceMem[typeof(container.items)](container, p, byte_len)
|
|
|
|
proc newSliceMem*[T, U](container: sink U; first, last: pointer): SliceMem[T] =
|
|
## Create a SliceMem from a container and the two pointers of the first and
|
|
## last elements in the container. Usually you will want to use `toSliceMem`
|
|
## instead.
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](first),
|
|
byte_len: (last.toInt -% first.toInt) + sizeof(T),
|
|
destroy_ref: (ref CustomDestructor)(destroy: proc()=
|
|
discard container
|
|
),
|
|
)
|
|
|
|
proc newSliceMem*[T](size: int): SliceMem[T] =
|
|
## Create a SliceMem from new memory, similar to ArrRef[T].
|
|
var r: ref byte
|
|
unsafeNew(r, size * sizeof(T))
|
|
result = SliceMem[T](
|
|
data: cast[ptr UncheckedArray[T]](r),
|
|
byte_len: size * sizeof(T),
|
|
destroy_ref: (ref CustomDestructor)(destroy: proc()=
|
|
discard r
|
|
),
|
|
)
|
|
|
|
macro noMove(e: untyped): untyped =
|
|
if e.kind == nnkCommand and e[0].repr == "move": e[1]
|
|
else: e
|
|
|
|
template toSliceMem*(container, slice: untyped): untyped =
|
|
## Create a SliceMem from a container and a slice that indicates the range.
|
|
## The container needs to have `[]` and `items()` (like `seq`). If it doesn't
|
|
## you need to pass pointers directly to `newSliceMem` instead.
|
|
if slice.len != 0:
|
|
# TODO: check that with boundChecks:off it doesn't try to read the value
|
|
let first = noMove(container)[slice.a].addr
|
|
let last = noMove(container)[slice.b].addr
|
|
newSliceMem[typeof(noMove(container).items)](container, first, last)
|
|
else:
|
|
SliceMem[typeof(container.items)]()
|
|
|
|
template toSliceMem*(container): untyped =
|
|
## Create a SliceMem from a container, with all its contents. The container
|
|
## needs to have `[]` and `items()` (like `seq`). If it doesn't you need to
|
|
## pass pointers directly to `newSliceMem` instead.
|
|
let s = noMove(container).low .. noMove(container).high
|
|
toSliceMem(container, s)
|
|
|
|
template len*[T](s: SliceMem[T]): Natural =
|
|
s.byte_len div sizeof(T)
|
|
|
|
template low*[T](s: SliceMem[T]): Natural = 0
|
|
|
|
template high*[T](s: SliceMem[T]): int = s.len - 1
|
|
|
|
proc `[]`*[T](s: SliceMem[T], i: Natural): var T {.inline.} =
|
|
when compileOption("rangechecks"):
|
|
if i >= s.len:
|
|
raise newException(RangeDefect, &"index out of range: {i} >= {s.len}")
|
|
s.data[i]
|
|
|
|
proc `[]=`*[T](s: SliceMem[T], i: Natural, v: T) {.inline.} =
|
|
when compileOption("rangechecks"):
|
|
if i >= s.len:
|
|
raise newException(RangeDefect, &"index out of range: {i} >= {s.len}")
|
|
s.data[i] = v
|
|
|
|
template `[]`*[T](s: SliceMem[T], i: BackwardsIndex): T =
|
|
s[s.len - i.int]
|
|
|
|
template `[]=`*[T](s: SliceMem[T], i: BackwardsIndex, v: T) =
|
|
s[s.len - i.int] = v
|
|
|
|
template `[]`*[T](s: SliceMem[T], i: BackwardsIndex): T =
|
|
s[s.len - i.int]
|
|
|
|
template `[]=`*[T](s: SliceMem[T], i: BackwardsIndex, v: T) =
|
|
s[s.len - i.int] = v
|
|
|
|
template `[]`*[T](a: SliceMem[T], s: Slice[int]): var SliceMem[T] =
|
|
toSliceMem(a, s)
|
|
|
|
iterator items*[T](s: SliceMem[T]): T =
|
|
for i in 0 ..< s.len:
|
|
yield s.data[i]
|
|
|
|
iterator pairs*[T](s: SliceMem[T]): tuple[key: int, val: T] =
|
|
for i in 0 ..< s.len:
|
|
yield (i, s.data[i])
|
|
|
|
iterator mitems*[T](s: SliceMem[T]): var T =
|
|
for i in 0 ..< s.len:
|
|
yield s.data[i]
|
|
|
|
iterator mpairs*[T](s: SliceMem[T]): tuple[key: int, val: var T] =
|
|
for i in 0 ..< s.len:
|
|
yield (i, s.data[i])
|
|
|
|
proc `$`*[T](s: SliceMem[T]): string =
|
|
result = "SliceMem(["
|
|
if s.byte_len != 0:
|
|
let hi = s.high
|
|
for i in 0 ..< hi:
|
|
result &= $s.data[i] & ", "
|
|
result &= $s.data[hi]
|
|
result &= "])"
|
|
|
|
proc hash*[T](s: SliceMem[T]): Hash =
|
|
# Make use of stdlib's murmur3
|
|
hash(cast[ptr UncheckedArray[byte]](s.data).toOpenArray(0, s.byte_len - 1))
|
|
|
|
template toOpenArray*(s: SliceMem): untyped =
|
|
s.data.toOpenArray(0, s.byte_len - 1)
|
|
|
|
template toOpenArrayByte*(s: SliceMem): untyped =
|
|
cast[ptr UncheckedArray[byte]](s.data).toOpenArray(0, s.byte_len - 1)
|
|
|
|
template to*[T](s: SliceMem, typ: typedesc[T]): SliceMem[T] =
|
|
cast[SliceMem[T]](s)
|
|
|
|
template to*[T](s: seq[SliceMem], typ: typedesc[T]): seq[SliceMem[T]] =
|
|
var s2 = newSeqOfCap[SliceMem[T]](s.len)
|
|
for slice in s:
|
|
s2.add cast[SliceMem[T]](slice)
|
|
s2
|
|
|
|
template concatImpl(slices: untyped) =
|
|
var total = 0
|
|
for s in slices:
|
|
total += s.len
|
|
result = newSliceMem[T](total)
|
|
var offset = 0
|
|
for s in slices:
|
|
copyMem(result[offset].addr, s.data, s.len * sizeof(T))
|
|
offset += s.len
|
|
|
|
proc concat*[T](slices: varargs[SliceMem[T]]): SliceMem[T] =
|
|
concatImpl(slices)
|
|
|
|
proc concat*[T](slices: seq[SliceMem[T]]): SliceMem[T] =
|
|
concatImpl(slices)
|
|
|
|
template `&`*[T,U](a: SliceMem[T], b: SliceMem[U]): SliceMem[T] =
|
|
concat(a, b.to(T))
|