myou-engine/libs/oiio/oiio.cpp

308 lines
9.7 KiB
C++

enum ImageFormat {
FORMAT_UNKNOWN = 0,
FORMAT_BYTE, // 8-bit unsigned
FORMAT_SHORT, // 16-bit unsigned
FORMAT_HALF, // 16-bit float
FORMAT_FLOAT, // 32-bit float
MAX_ENUM = 0x7FFFFFFF
};
// image_decoder.cpp
#include <OpenImageIO/imageio.h>
#include <OpenImageIO/filesystem.h>
#include <OpenImageIO/imagebufalgo.h>
#include <cstring>
#include <exception>
#include <array>
#include <string>
using namespace OIIO;
static ImageFormat type_to_format(TypeDesc type) {
switch (type.basetype) {
case TypeDesc::UINT8: return FORMAT_BYTE;
case TypeDesc::UINT16: return FORMAT_SHORT;
case TypeDesc::HALF: return FORMAT_HALF;
case TypeDesc::FLOAT: return FORMAT_FLOAT;
default: return FORMAT_UNKNOWN;
}
}
static const char* type_to_string(TypeDesc type) {
switch (type.basetype) {
case TypeDesc::UINT8: return "FORMAT_BYTE";
case TypeDesc::UINT16: return "FORMAT_SHORT";
case TypeDesc::HALF: return "FORMAT_HALF";
case TypeDesc::FLOAT: return "FORMAT_FLOAT";
default: return "FORMAT_UNKNOWN";
}
}
static TypeDesc format_to_type(enum ImageFormat format) {
switch (format) {
case FORMAT_BYTE: return TypeDesc::UINT8; // 8-bit unsigned
case FORMAT_SHORT: return TypeDesc::UINT16; // 16-bit unsigned
case FORMAT_HALF: return TypeDesc::HALF; // 16-bit float
case FORMAT_FLOAT: return TypeDesc::FLOAT; // 32-bit float
default: return TypeDesc::UNKNOWN; // Unknown format
}
}
extern "C" {
int oiio_image_decode(const uint8_t* input, size_t input_len,
uint8_t* output, size_t output_len,
int32_t desired_channels, ImageFormat format, char* is_BGR, const char* file_name) {
if (!input || !output || desired_channels < 1 || desired_channels > 4) {
fprintf(stderr, "Invalid input parameters\n");
return 0;
}
uint8_t* decoded = output;
bool free_decoded = false;
try {
auto mem_reader = Filesystem::IOMemReader(input, input_len);
auto in = ImageInput::open(file_name, nullptr, &mem_reader);
if (!in) {
fprintf(stderr, "Open failed: %s\n", geterror().c_str());
return 0;
}
const ImageSpec& spec = in->spec();
*is_BGR = spec.channelnames[0] == "B"? 1:0;
const size_t required = spec.width * spec.height * desired_channels;
const TypeDesc ftype = format_to_type(format);
if (output_len != required * ftype.size()) {
fprintf(stderr, "Buffer size mismatch: Needed %zu, got %u\n",
required * ftype.size(), output_len);
in->close();
return 0;
}
if(spec.nchannels != desired_channels){
// have a separate buffer for the decoded image, free later
decoded = (uint8_t*)malloc(spec.image_bytes());
free_decoded = true;
}
if (!in->read_image(0, 0, 0, spec.nchannels, ftype, decoded)) {
fprintf(stderr, "Read error: %s\n", in->geterror().c_str());
in->close();
if(free_decoded) free(decoded);
return 0;
}
if(spec.nchannels < desired_channels){
// expand channels
ImageSpec src_spec(spec.width, spec.height, spec.nchannels, ftype);
ImageBuf src_buf(src_spec, decoded);
ImageSpec dst_spec(spec.width, spec.height, desired_channels, ftype);
ImageBuf dst_buf(dst_spec, output);
const float channel_values[] = {0.0f, 0.0f, 0.0f, 1.0f};
// -1 below fills with the values above
std::array<int, 4> channel_order = {-1, -1, -1, -1};
for(int i=0; i<spec.nchannels; i++){
channel_order[i] = i;
}
if(spec.nchannels == 1 && desired_channels >= 3){
// single channel exception: make it greyscale RGB/RGBA
channel_order = {0,0,0,-1};
}
if (!ImageBufAlgo::channels(dst_buf, src_buf,
desired_channels,
channel_order, channel_values)) {
fprintf(stderr, "Channel conversion failed: %s\n", dst_buf.geterror().c_str());
in->close();
if(free_decoded) free(decoded);
return 0;
}
uint8_t* pixels = (uint8_t*)dst_buf.localpixels();
if(pixels != output){
// it turns out channels() always resets the buffer
// so it's no longer wrapping output
memcpy(output, pixels, dst_spec.image_bytes());
}
}
in->close();
if(free_decoded) free(decoded);
return 1;
}
catch (const std::exception& e) {
fprintf(stderr, "Exception: %s\n", e.what());
if(free_decoded) free(decoded);
return 0;
}
catch (...) {
fprintf(stderr, "Unknown exception occurred\n");
if(free_decoded) free(decoded);
return 0;
}
}
int oiio_image_get_attributes(const uint8_t* input, size_t input_len,
int32_t* width, int32_t* height, int32_t* channels,
enum ImageFormat* format, const char* file_name) {
if (!input) {
fprintf(stderr, "Null input buffer\n");
return 0;
}
try {
auto mem_reader = Filesystem::IOMemReader(input, input_len);
auto in = ImageInput::open(file_name, nullptr, &mem_reader);
if (!in) {
fprintf(stderr, "Open failed: %s\n", geterror().c_str());
return 0;
}
const ImageSpec& spec = in->spec();
if (width) *width = spec.width;
if (height) *height = spec.height;
if (channels) *channels = spec.nchannels;
if (format) *format = type_to_format(spec.format);
in->close();
return 1;
}
catch (const std::exception& e) {
fprintf(stderr, "Exception: %s\n", e.what());
return 0;
}
catch (...) {
fprintf(stderr, "Unknown exception occurred\n");
return 0;
}
}
} // extern "C"
// // image_to_ppm.c
// #include <stdio.h>
// #include <stdlib.h>
// int main(int argc, char** argv) {
// if (argc != 2) {
// fprintf(stderr, "Usage: %s <image-file>\n", argv[0]);
// return 1;
// }
// // Read input file
// FILE* file = fopen(argv[1], "rb");
// if (!file) {
// perror("Failed to open file");
// return 1;
// }
// fseek(file, 0, SEEK_END);
// long file_size = ftell(file);
// fseek(file, 0, SEEK_SET);
// uint8_t* input = (uint8_t*)malloc(file_size);
// if (!input) {
// fclose(file);
// fprintf(stderr, "Memory allocation failed\n");
// return 1;
// }
// if (fread(input, 1, file_size, file) != file_size) {
// fclose(file);
// free(input);
// fprintf(stderr, "File read error\n");
// return 1;
// }
// fclose(file);
// // Get image attributes
// int width, height, channels;
// enum ImageFormat format;
// if (!image_get_attributes(input, file_size, &width, &height, &channels, &format)) {
// free(input);
// fprintf(stderr, "Unsupported image format\n");
// return 1;
// }
// // Allocate output buffer for 3-channel RGB
// size_t output_size = width * height * 3;
// uint8_t* pixels = (uint8_t*)malloc(output_size);
// if (!pixels) {
// free(input);
// fprintf(stderr, "Output buffer allocation failed\n");
// return 1;
// }
// // Decode to 3 channels (RGB)
// if (!image_decode(input, file_size, pixels, output_size, 3, format)) {
// free(input);
// free(pixels);
// fprintf(stderr, "Image decoding failed\n");
// return 1;
// }
// free(input);
// // Output PPM header
// printf("P6\n%d %d\n255\n", width, height);
// // Output raw pixel data
// fwrite(pixels, 1, output_size, stdout);
// free(pixels);
// return 0;
// }
bool convertRGBToRGBA(const std::string& filename,
void* output_buffer,
size_t buffer_length,
std::string& error_msg) {
// Load source image
ImageBuf src_buf(filename);
if (!src_buf.read()) {
error_msg = "Failed to load image: " + src_buf.geterror();
return false;
}
const ImageSpec& src_spec = src_buf.spec();
// Verify source is RGB
if (src_spec.nchannels != 3) {
error_msg = "Image is not RGB (has " + std::to_string(src_spec.nchannels) + " channels)";
return false;
}
// Calculate required buffer size
TypeDesc data_type = src_spec.format;
const size_t required_size = src_spec.width * src_spec.height * 4 * data_type.size();
if (buffer_length < required_size) {
error_msg = "Buffer too small. Required: " + std::to_string(required_size) +
", provided: " + std::to_string(buffer_length);
return false;
}
// Prepare destination buffer wrapped in ImageBuf
ImageSpec dst_spec(src_spec.width, src_spec.height, 4, data_type);
ImageBuf dst_buf(dst_spec, output_buffer);
// Set up channel remapping with alpha=1.0
const int channel_order[] = {0, 1, 2, -1}; // Source RGB, new alpha
const float channel_values[] = {0.0f, 0.0f, 0.0f, 1.0f};
// Perform channel conversion
if (!ImageBufAlgo::channels(dst_buf, src_buf,
/* channel count */ 4,
channel_order, channel_values)) {
error_msg = "Channel conversion failed: " + dst_buf.geterror();
return false;
}
return true;
}