# TODO: make own vmath module with proper quats and more matrix types import vmath except Quat, quat type RotationOrder* = enum Quaternion EulerXYZ EulerXZY EulerYXZ EulerYZX EulerZXY EulerZYX AxisAngle type GQuat*[T] = object x*, y*, z*, w*: float32 Quat* = GQuat[float32] DQuat* = GQuat[float64] proc gquat*[T](x,y,z,w: T): GQuat[T] {.inline.} = GQuat[T](x:x, y:y, z:z, w:w) proc quat*(x,y,z,w: float32): Quat {.inline.} = Quat(x:x, y:y, z:z, w:w) proc dquat*(x,y,z,w: float64): DQuat {.inline.} = DQuat(x:x, y:y, z:z, w:w) template quat*(): Quat = quat(0,0,0,1) template dquat*(): DQuat = dquat(0,0,0,1) template quat*(v: Vec4): Quat = cast[Quat](v) template dquat*(v: DVec4): DQuat = cast[DQuat](v) template `[]`*[T](q: GQuat[T], i: int): T = cast[array[4, T]](q)[i] template `[]=`*[T](q: var GQuat[T], i: int, v: T) = case i: of 0: q.x = v of 1: q.y = v of 2: q.z = v of 3: q.w = v else: raise RangeDefect.newException "Index out of range" # https://stackoverflow.com/questions/28673777/convert-quaternion-from-right-handed-to-left-handed-coordinate-system # S=s, B=−b, C=−d and D=−c. func swap_quat_handness*[T](q: GQuat[T]): GQuat[T] = # this swaps from right handed Z-up to left handed Y-up # and vice versa # TODO: rotate 90 to not change up-ness? GQuat[T](x: -q.x, y: -q.z, z: -q.y, w: q.w) func to_quat*[T](m: GMat3[T]|GMat4[T]): GQuat[T] = # http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm let trace = m[0,0] + m[1,1] + m[2,2] if trace > 0: let s = 0.5 / sqrt(trace + 1.0) result.w = 0.25 / s result.x = (m[1,2] - m[2,1]) * s result.y = (m[2,0] - m[0,2]) * s result.z = (m[0,1] - m[1,0]) * s elif (m[0,0] > m[1,1]) and (m[0,0] > m[2,2]): let s = 2.0 * sqrt(1.0 + m[0,0] - m[1,1] - m[2,2]) result.w = (m[1,2] - m[2,1]) / s result.x = 0.25 * s result.y = (m[1,0] + m[0,1]) / s result.z = (m[2,0] + m[0,2]) / s elif m[1,1] > m[2,2]: let s = 2.0 * sqrt(1.0 + m[1,1] - m[0,0] - m[2,2]) result.w = (m[2,0] - m[0,2]) / s result.x = (m[1,0] + m[0,1]) / s result.y = 0.25 * s result.z = (m[2,1] + m[1,2]) / s else: let s = 2.0 * sqrt(1.0 + m[2,2] - m[0,0] - m[1,1]) result.w = (m[0,1] - m[1,0]) / s result.x = (m[2,0] + m[0,2]) / s result.y = (m[2,1] + m[1,2]) / s result.z = 0.25 * s func inverse*[T](a: GQuat[T]): GQuat[T] = let dot = a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w if dot == 0: return return gquat[T](-a.x, -a.y, -a.z, a.w) * (1/dot) proc normalize*[T](q: GQuat[T]): GQuat[T] = let length = sqrt(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w) if length == 0: return q return gquat[T](q.x / length , q.y / length, q.z / length, q.w / length) func to_mat[T,U](q: GQuat[T]): U = let xx = q.x * q.x * 2 let yx = q.y * q.x * 2 let yy = q.y * q.y * 2 let zx = q.z * q.x * 2 let zy = q.z * q.y * 2 let zz = q.z * q.z * 2 let wx = q.w * q.x * 2 let wy = q.w * q.y * 2 let wz = q.w * q.z * 2 result[0,0] = 1 - yy - zz result[1,0] = yx - wz result[2,0] = zx + wy result[0,1] = yx + wz result[1,1] = 1 - xx - zz result[2,1] = zy - wx result[0,2] = zx - wy result[1,2] = zy + wx result[2,2] = 1 - xx - yy when U is GMat4[T]: result[3,3] = 1 template to_mat3*[T](q: GQuat[T]): GMat3[T] = to_mat[T,GMat3[T]](q) template to_mat4*[T](q: GQuat[T]): GMat4[T] = to_mat[T,GMat4[T]](q) func `*`*[T](q: GQuat[T], a: GVec3[T]): GVec3[T] = # calculate quat * vec let ix = q.w * a.x + q.y * a.z - q.z * a.y let iy = q.w * a.y + q.z * a.x - q.x * a.z let iz = q.w * a.z + q.x * a.y - q.y * a.x let iw = -q.x * a.x - q.y * a.y - q.z * a.z # calculate result * inverse quat result.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y result.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z result.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x proc `*`*[T](a, b: GQuat[T]): GQuat[T] = GQuat[T]( x: a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y, y: a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x, z: a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w, w: a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z, ) proc `*`*[T](q: GQuat[T], s: T): GQuat[T] = GQuat[T](x: q.x*s, y: q.y*s, z: q.z*s, w: q.w*s) template to_tuple*[T](v: GQuat[T]): (T, T, T, T) = # (v.x, v.y, v.z, v.w) cast[(T,T,T,T)](v) # http://stackoverflow.com/questions/1031005/is-there-an-algorithm-for-converting-quaternion-rotations-to-euler-angle-rotatio proc threeaxisrot[T](r11, r12, r21, r31, r32: T): GVec3[T] = gvec3[T](arctan2(r31, r32), arcsin (r21), arctan2(r11, r12)) # NOTE: It uses Blender's convention for euler rotations: # XYZ means that to convert back to quat you must rotate Z, then Y, then X proc to_euler_XYZ*[T](q: GQuat[T]): GVec3[T] = threeaxisrot(2*(q.x*q.y + q.w*q.z), q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z, -2*(q.x*q.z - q.w*q.y), 2*(q.y*q.z + q.w*q.x), q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z) proc to_euler_XZY*[T](q: GQuat[T]): GVec3[T] = threeaxisrot(-2*(q.x*q.z - q.w*q.y), q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z, 2*(q.x*q.y + q.w*q.z), -2*(q.y*q.z - q.w*q.x), q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z).xzy proc to_euler_YXZ*[T](q: GQuat[T]): GVec3[T] = threeaxisrot(-2*(q.x*q.y - q.w*q.z), q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z, 2*(q.y*q.z + q.w*q.x), -2*(q.x*q.z - q.w*q.y), q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z).yxz proc to_euler_YZX*[T](q: GQuat[T]): GVec3[T] = threeaxisrot(2*(q.y*q.z + q.w*q.x), q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z, -2*(q.x*q.y - q.w*q.z), 2*(q.x*q.z + q.w*q.y), q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z).yzx proc to_euler_ZXY*[T](q: GQuat[T]): GVec3[T] = threeaxisrot(2*(q.x*q.z + q.w*q.y), q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z, -2*(q.y*q.z - q.w*q.x), 2*(q.x*q.y + q.w*q.z), q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z).zxy proc to_euler_ZYX*[T](q: GQuat[T]): GVec3[T] = threeaxisrot(-2*(q.y*q.z - q.w*q.x), q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z, 2*(q.x*q.z + q.w*q.y), -2*(q.x*q.y - q.w*q.z), q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z).zyx proc rotateX*[T](q: GQuat[T], rad: T): GQuat[T] = let rad = rad * 0.5 let x = sin(rad) let w = cos(rad) result.x = q.x * w + q.w * x result.y = q.y * w + q.z * x result.z = q.z * w - q.y * x result.w = q.w * w - q.x * x proc rotateY*[T](q: GQuat[T], rad: T): GQuat[T] = let rad = rad * 0.5 let y = sin(rad) let w = cos(rad) result.x = q.x * w - q.z * y result.y = q.y * w + q.w * y result.z = q.z * w + q.x * y result.w = q.w * w - q.y * y proc rotateZ*[T](q: GQuat[T], rad: T): GQuat[T] = let rad = rad * 0.5 let z = sin(rad) let w = cos(rad) result.x = q.x * w + q.y * z result.y = q.y * w - q.x * z result.z = q.z * w + q.w * z result.w = q.w * w - q.z * z proc to_quat*[T](euler: GVec3[T], order: RotationOrder): GQuat[T] = var q = quat() case order: of Quaternion: raise newException(ValueError, "invalid euler order") of EulerXYZ: q = q.rotateZ euler.z q = q.rotateY euler.y q = q.rotateX euler.x of EulerXZY: q = q.rotateY euler.y q = q.rotateZ euler.z q = q.rotateX euler.x of EulerYXZ: q = q.rotateZ euler.z q = q.rotateX euler.x q = q.rotateY euler.y of EulerYZX: q = q.rotateX euler.x q = q.rotateZ euler.z q = q.rotateY euler.y of EulerZXY: q = q.rotateY euler.y q = q.rotateX euler.x q = q.rotateZ euler.z of EulerZYX: q = q.rotateX euler.x q = q.rotateY euler.y q = q.rotateZ euler.z of AxisAngle: raise newException(ValueError, "invalid euler order") return q proc rotationTo*(a,b: Vec3): Quat = let dot = dot(a, b) if dot < -0.999999: var v = cross(vec3(1,0,0), a) if v.length < 0.000001: v = cross(vec3(0,1,0), a) return cast[Quat](fromAxisAngle(v.normalize, PI)) elif dot > 0.999999: return quat(0,0,0,1) else: let v = cross(a, b) return quat(v.x, v.y, v.z, 1.0+dot).normalize