# The contents of this file are subject to the Common Public Attribution License # Version 1.0 (the “License”); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # https://myou.dev/licenses/LICENSE-CPAL. The License is based on the Mozilla # Public License Version 1.1 but Sections 14 and 15 have been added to cover use # of software over a computer network and provide for limited attribution for # the Original Developer. In addition, Exhibit A has been modified to be # consistent with Exhibit B. # # Software distributed under the License is distributed on an “AS IS” basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for # the specific language governing rights and limitations under the License. # # The Original Code is Myou Engine. # # the Original Developer is the Initial Developer. # # The Initial Developer of the Original Code is the Myou Engine developers. # All portions of the code written by the Myou Engine developers are Copyright # (c) 2024. All Rights Reserved. # # Alternatively, the contents of this file may be used under the terms of the # GNU Affero General Public License version 3 (the [AGPL-3] License), in which # case the provisions of [AGPL-3] License are applicable instead of those above. # # If you wish to allow use of your version of this file only under the terms of # the [AGPL-3] License and not to allow others to use your version of this file # under the CPAL, indicate your decision by deleting the provisions above and # replace them with the notice and other provisions required by the [AGPL-3] # License. If you do not delete the provisions above, a recipient may use your # version of this file under either the CPAL or the [AGPL-3] License. import ./platform/gl import vmath except Quat import std/math import std/algorithm import arr_ref template to_tuple*[T](v: GVec2[T]): (T, T) = (v.x, v.y) template to_tuple*[T](v: GVec3[T]): (T, T, T) = (v.x, v.y, v.z) template to_tuple*[T](v: GVec4[T]): (T, T, T, T) = (v.x, v.y, v.z, v.w) ## Converts a 4x4 matrix to a 3x3 rotation matrix ## ignoring any scale and skew. ## If it's not orthogonal, the Z axis is preserved ## and the other two are made orthogonal. func to_mat3_rotation*[T](m: GMat4[T]): GMat3[T] = var x = m[0].xyz.normalize var y = m[1].xyz.normalize var z = m[2].xyz.normalize # This favours the Z axis to preserve # the direction of cameras and lights x = cross(y,z) y = cross(z,x) return mat3(x,y,z) func to_normal_matrix*[T](m: GMat4[T]): GMat3[T] = # TODO: test: is it inverse.transpose or transpose.inverse? m.to_mat3.inverse.transpose func to_mat3*[T](m: GMat4[T]): GMat3[T] = return mat3(m[0].xyz, m[1].xyz, m[2].xyz) func to_mat4*[T](m: GMat3[T]): GMat4[T] = return mat4(m[0].vec4, m[1].vec4, m[2].vec4, vec4(0,0,0,1)) func remove_scale_skew*[T](m: GMat4[T]): GMat4[T] = result = m.to_mat3_rotation.to_mat4 result[3,0] = m[3,0] result[3,1] = m[3,1] result[3,2] = m[3,2] proc remove*[T](s: var seq[T], element: T): bool {.raises:[],discardable.} = ## Removes a value from a seq if it exists. Returns whether an item was ## removed. Preserves the order of the other elements. If the element is ## repeated, only one instance is removed. let index = s.find element if index != -1: # Since we only remove an existing element, it should never raise, # but we have to use try/except to satisfy raises:[] try: s.delete index except: discard return true proc remove_unordered*[T](s: seq[T], element: T): bool {.raises:[],discardable.} = ## Removes a value from a seq if it exists. Returns whether an item was ## removed. It's quicker than `remove` by moving the last element to the slot ## of the removed one. If the element is repeated, only one instance is ## removed. let index = s.find element if index != -1: # Since we only remove an existing element, it should never raise, # but we have to use try/except to satisfy raises:[] try: s.del index except: discard return true func align4*[T: SomeInteger](n: T): T = # Increments the number to the nearest multiplier of 4 if it's not already # aligned. n + ((4-(n and 3)) and 3) func align*[T: SomeInteger](n, align: T): T = ## Increments the number to the nearest multiplier of the `align` parameter, ## if it's not already aligned. `align` must be a power of two. let mask = align - 1 assert((align and mask) == 0, "align must be a power of two") return n + ((align-(n and mask)) and mask) func bytelen*[T](s: seq[T]): int = ## Provides the size of the seq in bytes. s.len * sizeof(T) func getOrDefault*[T](s: seq[T], i: int, default: T = T.default): T = ## Returns an element of the seq if the index is within bounds, otherwise it ## returns a default value, optionally given as argument. if i >= s.low and i <= s.high: return s[i] return default template rotate_cw*[T](v: GVec3[T]): GVec3[T] = gvec3[T](v.y, -v.x, v.z) template rotate_ccw*[T](v: GVec3[T]): GVec3[T] = gvec3[T](-v.y, v.x, v.z) template PGLfloat*[T](v: T): ptr GLfloat = cast[ptr GLfloat](unsafeAddr v) template get_ptr_len*[T](arr: seq[T]): (ptr UncheckedArray[T], int) = if arr.len != 0: (cast[ptr UncheckedArray[T]](addr arr[0]), arr.len) else: (nil, 0) template error_enum_to_string*(e: GLenum): string = case e: of GL_NO_ERROR: "GL_NO_ERROR" of GL_INVALID_ENUM: "GL_INVALID_ENUM" of GL_INVALID_FRAMEBUFFER_OPERATION: "GL_INVALID_FRAMEBUFFER_OPERATION" of GL_INVALID_INDEX: "GL_INVALID_INDEX" of GL_INVALID_OPERATION: "GL_INVALID_OPERATION" of GL_INVALID_VALUE: "GL_INVALID_VALUE" else: $e proc fibonacci_sphere*(samples: int): seq[Vec3] = const phi: float32 = PI * (sqrt(5'f32) - 1) # golden angle in radians for i in 0 ..< samples: let y = (1 - (i / (samples - 1)) * 2) * (1 - 0.5'f32/samples.float32) let radius = sqrt(1 - y * y) # radius at y let theta = phi * i.float32 # golden angle increment let x = cos(theta) * radius let z = sin(theta) * radius result.add vec3(x, y, z) proc `|=`*(a: var GLbitfield, b: GLbitfield) = a = (a.GLuint or b.GLuint).GLbitfield when defined(opengl_es): proc `not`*(x: GLbitfield): GLbitfield = (not x.GLuint).GLbitfield proc `and`*(a: GLbitfield, b: GLbitfield): GLbitfield = (a.GLuint and b.GLuint).GLbitfield proc `$`*(x: GLenum): string = $(x.uint32) func get_culling_planes*(mat: Mat4): array[6, Vec4] = # Gribb/Hartmann method [ mat[3] + mat[0], # left mat[3] - mat[0], # right mat[3] + mat[1], # bottom mat[3] - mat[1], # top mat[3] + mat[2], # near mat[3] - mat[2], # far ] template staticOrDebugRead*(path: string): string = when not defined(release) and not (defined(ios) or defined(android) or defined(emscripten)): const dir = currentSourcePath.rsplit('/',1)[0] & '/' readFile dir & path else: staticRead path template nonNil*(x: untyped): bool = x != nil # TODO: move to vmath fork template low*[T](x: typedesc[GVec2[T]]): GVec2[T] = gvec2[T](T.low,T.low) template low*[T](x: typedesc[GVec3[T]]): GVec3[T] = gvec3[T](T.low,T.low,T.low) template low*[T](x: typedesc[GVec4[T]]): GVec4[T] = gvec4[T](T.low,T.low,T.low,T.low) template high*[T](x: typedesc[GVec2[T]]): GVec2[T] = gvec2[T](T.high,T.high) template high*[T](x: typedesc[GVec3[T]]): GVec3[T] = gvec3[T](T.high,T.high,T.high) template high*[T](x: typedesc[GVec4[T]]): GVec4[T] = gvec4[T](T.high,T.high,T.high,T.high) proc min*[T](v: GVec2[T]): T {.inline.} = min(v.x, v.y) proc min*[T](v: GVec3[T]): T {.inline.} = min(min(v.x, v.y), v.z) proc min*[T](v: GVec4[T]): T {.inline.} = min(min(min(v.x, v.y), v.z), v.w) proc max*[T](v: GVec2[T]): T {.inline.} = max(v.x, v.y) proc max*[T](v: GVec3[T]): T {.inline.} = max(max(v.x, v.y), v.z) proc max*[T](v: GVec4[T]): T {.inline.} = max(max(max(v.x, v.y), v.z), v.w) # bounding box operations template `&`*[T](a, b: (GVec3[T], GVec3[T])): (GVec3[T], GVec3[T]) = (min(a[0], b[0]), max(a[1], b[1])) template `|`*[T](a, b: (GVec3[T], GVec3[T])): (GVec3[T], GVec3[T]) = (max(a[0], b[0]), min(a[1], b[1])) iterator box_corners*[T](bb: (GVec3[T], GVec3[T])): GVec3[T] = let bb = cast[array[2, GVec3[T]]](bb) for z in [0,1]: for y in [0,1]: for x in [0,1]: yield gvec3[T](bb[x].x, bb[y].y, bb[z].z)